ATLAS High Granularity Timing Detector

Zhijun Liang

(Institute of High Energy physics, CAS, China) on behalf of the ATLAS collaboration

ICHEP 2022, July 6 -13, 2022

High Granularity Timing Detector (HGTD)

- HGTD aim to reduce pileup contribution at HL-LHC
 - > Timing resolution is required to be better than 50 ps per track
 - Approved by CERN LHCC in September 2020
 - 6.4 m² area silicon detector and ~ 3.6 × 10⁶ channels
- High Granularity: Pixel pad size: 1.3mm × 1.3mm
- Radiation hardness : 2.5x10¹⁵ N_{eq} /cm² and 2 MGy

Low Gain Avalanche Detectors (LGAD)

- Compared to APD and SiPM, LGAD has modest gain (10-50)
- High drift velocity, thin active layer (fast timing)
- High S/B, no self-triggering

$$\sigma_{jitter}^2 = \left(\frac{t_{rise}}{S/N}\right)^2$$

Modest gain to increase S/N
 Need thin detector to decrease t_{rise}

3

Latest prototypes produced by different vendors

- Lots of prototypes R & D in LGAD in last few years, active vendors includes:
 - IHEP-IME (China), USTC-IME (China), IHEP-NDL(China), FBK (Italy), CNM (Spain), HPK (Japan) ...

Full size LGAD sensor prototype

- Good uniformity of full size LGAD prototype (15*15 channels)
 - IHEP-IME, USTC-IME, HPK, FPK, CNM has produced good full-size LGAD prototype.

LGAD sensor after Irradiation

- After irradiation, Boron doping in gain layer became less active (Acceptor removal)
- Carbon-enriched LGAD is more radiation hard
 - Carbon "stabilized" boron doping
- IHEP-IME/FBK/USTC-IME LGAD with carbon
 - Significantly lower acceptor removal ratio
 - Significantly more radiation hard

From Gregor's talk at CERN Detector seminar https://indico.cern.ch/event/1088953/

[G.Paternoster, FBK, Trento, Feb.2019]

LGAD Single Event Burnout effect (HV stability in the beam)

- RD50, CMS and ATLAS confirmed Single Event Burnout (SEB) effect in testbeam
- The key to avoid burnout effect is to operate at low HV
 Burn mark of Single Event Burnout
 - Safe region: < 11 V/um
 - Operate volage needed to be <550 V (assuming 50um thick EPI layer)
- HGTD performed test beam at CERN recently
 - LGADs with HV on in 120 GeV high intensity proton beam
 - Good performance for Carbon-enriched LGAD
 - Survived at operational volage

CERN test beam: 120 GeV proton

Performance of various LGAD prototypes at 2.5e15 cm⁻² fluence

- Carbon enriched LGADs fulfil HGTD sensor requirements after irradiation
- The effect of the Carbon-enrichment is clearly very beneficial and allows the sensors to be operated at much smaller voltages
 - Eg: IHEP-IME sensor can reach 4fC at below 300V after irradiation

Time resolution of LGADs Vs Bias Voltage

Charge collection Vs bias voltage

Performance of irradiated LGAD prototypes at testbeam

- Carbon-enriched sensors reached specification requirements.
- Close to 100% hit efficiency for irradiated LGAD at DESY/CERN test beam

ALTIROC : Fast Timing ASIC

- 225 front-end channels in ALTIROC, each channel has
 - A preamplifier followed by a discriminator:
 - Two TDC (Time to Digital Converter) to provide digital Hit data
 - Time of Arrival (TOA) : Range of 2.5 ns and a bin of 20 ps (7 bits)
 - Time Over Threshold (TOT) : range of 20 ns and a bin of 40 ps (9 bits)
 - One Local memory: to store the 17 bits of the time measurement until LO/L1

Institute of High Energy Physics

1EGA

aboratoire de Physique

CHIPS

ALTIROC R & D

- ALTIROC0 preamplifier + discriminator waveform sampling on the oscilloscope
- ALTROC1– 5x5 array with complete analogue front end (discriminator + TDC)
- ALTIROC2– 15x15 array with almost complete functionalities
 - Full-size ASIC prototype ~2x2 cm² with 225 readout channels
 - Large amount of digital data, limited power consumption (1.2W/ASIC \rightarrow 5.3 mW/ channel)
 - data serializers @ up to 1.28 Gb/s,
 - ALTIROC1 and testboad

ALTIROC2 wafer

ALTIROC2 test bench setup

ALTIROC1 testing

- Very demanding requirement of <70 ps time resolution @ 4 fC
 - LGAD collected charge >15 fC (>4 fC) before (after) irradiation
- Charge injection self-calibration test in ALTIROC
 - Thresholds can be as low as 2 fC full efficiency reached at ~3 fC
 - ~15 ps jitter @ 15 fC, better than 70 ps jitter@ 4 fC

ATLAS

ALTIROC1 mini-modules performance at test beam

- 5*5 channels Mini-modules (ALTIROC1+LGAD) was tested at testbeam
 - 46ps timing resolution after time walk correction

ALTIROC1 mini-modules @ test beam

ALTIROC2 full-size hybrid

- IFAE already made 15+ bare module prototype (ALTIROC2 + HPK LGAD)
- IHEP worked with NCAP company, made 40+ bare module prototype by far
 - ALTIROC2 + IHEP-IME v2 LGAD sensors
- AEMtec (Germany) company made 30 prototype
 - ALTIROC2 + FBK LGAD sensors

X-ray image of full-size hybrid

Hybrid functional test

Sr-90 Source tests

- Very collimated, it was moved to cover the whole area
- Basically a noise scan, but pixels with more hits just indicate that the area was exposed for longer time
- So far hybrids fully tested, and they are all operational

Module assembly

 Jigs tools and pick-and-place machine are in development

pick-and-place machine

Picking flex

Detector units

- Modules are installed and glued on support units (PEEK)
 - Challenges :machining or 3D printing of PEEK (flatness <200μm)</p>

Loading modules on support units

Different color represents different support units.

Loading modules on support units

Module

Support units metrology

Peripheral electronics board (PEB)

- Work on the characterization of all individual components, prototypes under production:
 - Detailed testing of the DC/DC converter (bPOL12V), different options under consideration
 - ->> need to fulfil space constraints, power efficiency measured
 - Started tests on IpGBT with evaluation board
 - VTRX+: successfully tested 2.56G/10.24G communication, bit error rate (<10⁻¹²), passed eye diagram test
 - MUX64: analogue multiplexer (for monitoring of ASIC power supply and temperature)
 - → basic functionality confirmed, On-resistance larger than expected (further investigations necessary)

DC/DC converter

lpGBT eval. board

VTRx+ eval. board

19

MUX64 in QFN88

Heater demonstrator

Demonstrator

- Heater demonstrator
 - 19 silicon heaters mounted on a single stave
 - Representing modules dissipating heat
 - on the cooling plate (CO2 cooling)
- DAQ demonstrator
 - Minimum system for full chain readout, from module emulator boards to FELIX board
 - Support up to 14 modules with two lpGBTs and one VTRx+
 - Timing
 - Up to 3 modules @ 1.28Gbps
 - Up to 7 modules @ 640Mbps
 - Up to 14 modules @ 320Mbps
 - Luminosity
 - 7 modules @ 640Mbps

DAQ demonstrator

HGTD Mechanics and service

- Hermetic vessel and on-detector cooling passed SPR review
- Cooling plate with CO2 loops design and prototyping in good Progress
- Outer ring in progress: Challenging tight junction design with lots of feed-through

Overall view with mechanics main items

Summary: HGTD detector for ATLAS phase II upgrade

- Good progress in LGAD design fulfilling the the radiation hardness requirements
 - Carbon enriched LGADs fulfil HGTD sensor requirements up to 2.5x10¹⁵ N_{eq} /cm²
- ALTIROC 2 (full size ASIC) on schedule, under study, so far all blocks functional
- Concrete implementation of Peripheral electronics components are under test
- full-size hybrids are in production and showed good results in functional tests
- Demonstrator activities ramping up
- Next milestones:
 - 2022: HGTD Demonstrator completed
 - 2023: Peripheral electronics boards and LGAD sensors production started
 - 2024: ASICs, Modules and detector units production started
 - 2026-2027: HGTD detector Integration at CERN, installation

Backup: High Granularity Timing Detector (HGTD)

- High precision timing (per-track resolution of 35-50ps up to 4000 fb-1) to mitigate pileup effects and improve the ATLAS performance in the forward region (2.4 ≤ |η| < 4.0)
- Provide online and offline luminosity measurements by transmitting N_{Hits} per ASIC at 40MHz in outer region
 - 2 disks (one per endcap) outside of ITk volume, upstream of the fwd. calorimeters, consisting of 2 doublesided layers each
 - Very limited space in z-direction → overall thickness of 12.5 cm for each disk
- Silicon sensor technology (LGAD)
- Max expected fluence in "3-ring layout" is 2.5e15 neq/cm² and sets the radiation hardness requirements for the sensors and electronics

Beta source tests: LGAD timing resolution measurements

- Sr⁹⁰ Beta telescope test (collected charge, gain, time resolution)
- UCSC boards with commercial amplifier and analog readout by Oscilloscope
 - Less constraints with respect to the ASICs exploring the limits of the sensors.
- Two UCSC boards with two LGAD
 - One LGAD is device under test (DUT)
 - Another LGAD is used to trigger electrons events from Sr⁹⁰

LGAD

LGAD Single Event Burnout effect (HV stability in the beam)

Peripheral board (PEB)

>PEB connects FE to the DAQ system, provides LV&HV to the modules

