

Physics performance of the ALICE experiment in LHC Run 3

Aimeric Landou on behalf of the ALICE collaboration

Outline

- I. The ALICE experiment at the LHC
- II. Upgrade of ALICE for Run 3
- III. Pilot Beam and results
 - A. PID with TPC and TOF
 - B. MFT performance
 - C. FIT performance
 - D. V^0 Analysis
 - E. More analyses
- IV. Summary

The ALICE physics motivations

- Main mission: probing the quarkgluon plasma (QGP), medium of deconfined quarks and gluons
- Focus on heavy-ion (Pb-Pb) collisions at total energies of hundreds of TeV inside the LHC
- Various probes: heavy-flavour production, low-mass dileptons, jets, strangeness enhancement, ...

Heavy-ion collision in ALICE – $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

The ALICE detector

- Combination of different detector technologies
- Tracking and identification of particles (PID) within 0.01-100 GeV/c $p_{\rm T}$ range
- Run 2: Pb-Pb at 1 kHz trigger rate,
 ~1 nb⁻¹ collected luminosity
- Run 3: Pb-Pb at 50 kHz interaction rate, $\sim \! 10 \; nb^{-1}$ luminosity projected
- Pilot Beam 2021: pp $\sqrt{s}=0.9$ TeV, 0.2 T Field, 8M collisions

Upgrade of the ALICE detector

- Continuous readout to fully exploit the increased Pb-Pb interaction rate of 50 kHz
- Improve tracking efficiency and low- p_{T} resolution
- Preserve PID capabilities
- Online analysis to significantly reduce the data volume (expected raw data flow rate up to 3.5 TB/s)

Upgrade: Inner Tracking System (ITS) Upgrade: Time Projection Chamber (TPC) GEM on readout planes New: Muon Forward Tracker to match muons before/after

For more: see Robert Münzer's presentation

New: Fast Interaction Trigger (FIT) to provide precise event time measurement and min. bias trigger for detectors with triggered readout

5

absorber

TPC upgrade

- Similar $p_{\rm T}$ resolution and d $E/{\rm dx}$ performance
- Cope with continuous readout:

Old Wire Chambers (MWPC, readout of 3 kHz max) — New Gas Electron Multiplier (GEM, 5 MHz readout rate)

CENTRAL HV ELECTRODE

TPC $p_{\rm T}$ resolution – Wire chamber (left), GEM (right)

INNER FIELD CAGE

ITS upgrade

- Readout rate increased to 100 kHz (for Pb-Pb)
- Improve tracking efficiency and spatial resolution:
 - 7 layers of silicon (monolithic active) pixel detectors
 - Inner layer closer to beam pipe (38 mm to 22 mm)
 - Reduced material budget (0.35% X_0 for inner barrel)

Outer barrel

Inner barrel

3D view of the ITS

Standalone tracking efficiency (left) and Impact-parameter resolution in the transverse plane (right) for primary charged pions as a function of $p_{\rm T}$ for the current ITS (blue) and the upgraded ITS (red)

Pilot Beam

- Run in October 2021
- 8M pp collisions at $\sqrt{s} = 0.9$ TeV
- 0.2 T Field instead of usual 0.5 T
- Completion of many years of work on the ALICE upgrade, that started before LS2 even began
- Test of the detectors, reconstruction and analysis software

Event display of an event of the pilot beam – 3D view (top), radial view (bottom right) side view (bottom left)

Pilot Beam $-\pi/K/p$ PID with TPC

PID performance comparable with Run 1 and 2

Ionisation energy loss in the TPC (dE/dx) as a function of momentum for reconstructed tracks

Ionisation energy loss in the TPC (dE/dx) as a function of the particle rigidity for reconstructed tracks

Pilot Beam $-\pi/K/p$ PID with TOF

PID performance comparable with Run 1 and 2

Particle velocity (β) as a function of momentum for reconstructed tracks in the TOF detector

Particle mass distribution for reconstructed tracks – calculated using the TOF detector particle velocity (β)

Pilot Beam – MFT

• Good performance of the new Muon Forward Tracker in the pilot beam

Aimeric Landou

11

Pilot Beam – FIT

- FTO is sensitive to z-position of primary vertex thanks to high timing resolution (13 ps)
- Good efficiency of FIT subdetectors

Position of the reconstructed primary vertex as a function of the FTO vertex position

Efficiency of the FIT detector as a function of the number of primary vertex contributors

12

Pilot Beam $-V^0$: K_S^0 and Λ

- Preliminary: fraction of full pilot beam data
- Invariant mass peaks clearly defined
- Armenteros plot shows K_S^0 , Λ and $\overline{\Lambda}$ ellipses

 $\begin{array}{c} \text{Armenteros-Podolanski plot-} \\ \text{measure of momentum asymmetry of V^0 daughters} \end{array}$

$$\alpha = \frac{p_{||}^+ - p_{||}^-}{p_{||}^+ + p_{||}^-}$$

ALICE Performance K_{S}^{0} , $0 < p_{T} < 10 \text{ GeV/}c$ 80

Gaussian Fit: $\mu = 489 \text{ MeV/}c^{2}$ $\sigma = 6.6 \text{ MeV/}c^{2}$ 0.46

0.47

0.48

0.49

0.55

0.51

0.52

ALI-PERF-502953

Invariant mass plot ${\rm K_S^0}$ ${\rm M_{\pi^+\pi^-}}$ ${\rm (GeV/}{\it c}^2{\rm)}$ pilot beam data

Pilot Beam – more analyses

- Several benchmark analyses carried out with pilot beam data
- Good agreement with past 900 GeV data

Corrected pseudo-rapidity distribution for charged tracks measured in the pilot beam compared to published ALICE data and Pythia 8 simulation

For more: see Abhi Modak's presentation

(Anti)proton-(anti)proton correlation function (black), compared to theoretical prediction (green)

Aimeric Landou

Summary

- Major upgrade of the ALICE detectors implemented during LS2
- First look at data from Pilot Beam run in October 2021:
 - \circ Good $\pi/K/p$ PID capabilities with the TPC and TOF
 - Promising first look at V⁰s, albeit fewer events analysed
- Pilot beam shows everything working well
- On 5th of July: Run 3 started with pp run at 13.6 TeV! Looking forward to Pb-Pb in November

Event display of a time frame of the pilot beam, about 100 collisions – 3D view (top), radial view (bottom left) side view (bottom right)

Thank you for your attention