

LHCb beam monitoring and safety systems

ICHEP Bologna, 6-13 July 2022

Holger Stevens on behalf of the LHCb collaboration

Radiation Monitoring

- Normal accelerator background depends on:
 - filling scheme
 - proton number
 - bunch length
- Background can reduce data quality
- Component damage possible

The LHCb Detector

Conditions in Run 3 + 4

- Luminosity 2 * 10³³cm⁻²s⁻¹
- Integrated luminosity 50 fb⁻¹ (~10 y)
- Full software trigger
- Trigger-less 40 MHz Detector readout
- Reduced VELO-beam distance
 5.1mm radial distance (8.2mm before)

Monitoring system positions

- Radiation Monitoring System (RMS)
 - Shielding wall
- Beam Conditions Monitor (BCM)
 - Upstream next to RMS
 - Downstream in front of the magnet

PLUME

- Details in "Luminosity at LHCb in Run 3" today 15:50
- <u>Poster</u>: Probe for Luminosity Measurement at LHCb

RMS-R3

- 4 Modules symmetrically around beam-pipe
- Backward acceptance of 7-14 degrees
- Relative beam interaction rate
- Interaction Point shifts ->Flux asymmetries
- Background conditions monitoring

RMS module

- Metal foil detector (MFD) with 5 Layer
- Sensor layer 50 µm copper
- Bias voltage 24 V
- Secondary electron emission -> positive charge in foil
- Dynamic range from 10³ 10⁹ MIP/sec
- Channel noise and resolution < 1%</p>

RMS data chain

- Integration time 1 s
- Current frequency converter
- Frequency counter
- Interface to LHCb via SOL40

First RMS run 3 data

8 Diamond sensors per station

- Synthetic and poly-crystalline
- 10 mm * 10 mm and 0.5 mm thick
- Steamed titanium-gold contacts
- Bias voltage = 200 V

Custom made support structures

Holger Stevens | 08.Jul.2022 | LHCb beam monitoring and safety systems

BCM

BCM motivation

LHC beam 2 injection in front of LHCb

- Large beam-shape
- Most imprecise condition

VELO in vacuum

- Stable beam condition -> sensors are moved closer to the beam
- Sensor 5.1 mm, RF-foil 3.5 mm
- BCM interlock signal needed

SPS 450 GeV beam

Cern accelerator school 2021

11

- Current integration via CFC card
 - Time window = $40 \ \mu s$
 - Data sent via optical link
- Beam permit in non-radiative area
- Signal threshold comparison on custom FPGA, Aria V

Holger Stevens | 08.Jul.2022 | LHCb beam monitoring and safety systems

Signal processing

12

BCM beam-dump logic

Current Measurements every 40 µs

Short range abort (~1 LHC turn)

Apply threshold for each diamond and frame

Threshold passed for two consecutive measurements ?

In three neighbouring diamonds?

Beam dump via LHC interface

Holger Stevens | 08.Jul.2022 | LHCb beam monitoring and safety systems

Long range abort (~14 LHC turn)

Sum current per diamond over 32 measurements

Sum diamonds in each station (excluding 2 largest and 1 smallest)

Apply threshold

Limited space

Sliding doors with half ring

Most activated area at LHCb

Quick replacement, in case of damage

Holger Stevens | 08.Jul.2022 | LHCb beam monitoring and safety systems

BCM-U

BCM-D

- Mounted around beryllium beam-pipe
- Support ring made of Tekapeek
 - Radiation hard
 - Low material budget

Station and cable Kapton shielded

RMS and BCM ready for RUN 3

Successful data taking during

- Beam test
- Scrubbing / loss maps
- First 13.8 TeV collisions

Holger Stevens | 08.Jul.2022 | LHCb beam monitoring and safety systems

Conclusion

18