Proton reconstruction with the Precision Proton Spectrometer in Run 2 and expectations for Run 3

Maria Margherita Obertino
University of Torino and INFN
Maria Margherita Obertino
University of Torino and INFN
On behalf of the CMS and TOTEM Collaborations

ICHEP 2022

Bologna, July 6-13 2022

Forward proton reconstruction @ CMS

Forward proton reconstruction @ CMS

Why reconstructing forward protons at CMS?

In typical $p p$ collisions at the LHC protons dissociate and large number of energetic particles is produced.
In rare cases (CEP - Central Exclusive Production)

- protons remain intact
- low track activity

Low track activity due to exchange of color singlets via QCD (Pomeron) or QED $(\gamma) \rightarrow$ Large rapidity gap (LRG)

With CEP a wide range of physics measurements become accessible:
\checkmark rare SM processes
A. Bellora's talk
\checkmark direct serch new resonances, including invisible states

Production of $t \bar{t}$ with 2 tagged forward protons

CMS CMS Experiment at the LHC, CERN
 Data recorded: 2017-Nov-02 09:32:14.105472 GMT
 Run / Event / LS: 306051 / 332134817 / 237

Proton tag: a powerful tool to study CEP

CEP events characterized by a striking signature:

- two final state forward protons on opposite sides of the interaction point (IP)
- large rapidity gaps between central system and leading protons

Difficult to exploit in standard LHC running conditions due to high pile-up

In CEP events the energy lost by the protons in the interaction goes into producing the X system

If the fractional momentum loss of the two protons emerging intact from the IP is measured

$$
\xi_{i}=\frac{\left|p_{i}\right|-\left|p_{i}^{\prime}\right|}{\left|p_{i}\right|}
$$

mass and rapidity of the central system X produced in the interaction can be determined as

$$
M_{X}=\sqrt{\xi_{1} \xi_{2} s}
$$

$$
y_{X}=\frac{1}{2} \ln \left(\frac{\xi_{1}}{\xi_{2}}\right)
$$

Full event reconstruction by matching central system and leading protons kinematics

Forward proton reconstruction @ CMS

Precision Proton Spectrometer (PPS)

PPS detectors located along the LHC beam line ($\sim 1.5 \mathrm{~mm}$ from the beam axis), at $\pm \sim 200 \mathrm{~m}$ from the CMS interaction point (IP5)
> Tracking detectors measure the proton displacement w.r.t. the beam which is translated into longitudinal and transverse momentum of the proton
$>$ Timing detectors measure the proton time of flight; used to disentangle pile-up

LHC magnets between IP5 and the detector stations used to bend out of the beam envelope protons that have lost a small fraction of their initial momentum in the interaction

PPS designed to operate continuously at standard LHC running conditions

PPS tracking detectors

Different detector configurations used in LHC-Run2

SiStrip

10 planes of micro-strip silicon detectors per RP

- 512 strips per plane, $\pm 45^{\circ}$ orientation
- Thickness: $300 \mu \mathrm{~m}$ - Pitch: $66 \mu \mathrm{~m}$
- Resolution ~20 $\mu \mathrm{m}$
- Lifetime: up to $5 \times 10^{14} \mathrm{p} / \mathrm{cm}^{2}$ integrated flux
- No multi-track reconstruction capability

3D pixel
6 planes of 3D silicon pixel sensors per RP

- Pixel area: $100 \times 150 \mu \mathrm{~m}^{2} \quad$ Sensor thickness: $230 \mu \mathrm{~m}$
- Resolution ~20 $\mu \mathrm{m}$
- Lifetime: $\sim 5 \times 10^{15} \mathrm{p} / \mathrm{cm}^{2}$ integrated flux
- Multi-track reconstruction capability

Forward proton reconstruction at a glance

2D (x, y) TRACK IMPACT POINT DISTRIBUTION - 2018 DETECTOR CONFIGURATION

- BEAM

RP alignment: a multi-step procedure

DEDICATED ALIGNMENT RUNS

- Low luminosity (2 or 3 bunches/fill) \rightarrow RPs inserted very close to the beam
- LHC settings (crossing angle, β^{*}) identical to those used in standard data taking
- Both vertical and horizontal RPs inserted

Horizontal/vertical detectors overlap allows to align vertical and horizontal RPs among themselves (uncertainty: few $\mu \mathrm{m}$)

Alignment of RPs wtih respect to the beam:

- elastic scattering events (vertical RPs)
- minimum bias events (horizontal RPs) Beam position determined using extrapolation of vertical and horizontal track profile Typical uncertainty: $10 \mu \mathrm{~m}$

ALIGNMENT ON FILL-BY-FILL BASIS (RP are movable objects, limited accuracy in fill-to-fill beam position reproducibility) maching observables from the fill to those from the dedicated allignment run

LHC optics: proton transport from IP to PPS

The proton kinematics at the IP

determined from the proton kinematics measured at the tracking detector through knowledge of the LHC optics parameters:

$$
\begin{gathered}
\left.\mathbb{R P P}_{x}^{x} \begin{array}{c}
\text { TRANSPORT MATRIX } \\
\theta_{x} \\
y \\
\theta_{y} \\
\xi
\end{array}\right)=\left(\begin{array}{ccccc}
v_{x} & L_{x} & 0 & 0 & D_{x} \\
v_{x}^{\prime} & L_{x}^{\prime} & 0 & 0 & D_{x}^{\prime} \\
0 & 0 & v_{y} & L_{y} & D_{y} \\
0 & 0 & v_{y}^{\prime} & L_{y}^{\prime} & D_{y}^{\prime} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x^{*} \\
\theta_{x}^{*} \\
y^{*} \\
\theta_{y}^{*} \\
\xi
\end{array}\right) .
\end{gathered}
$$

A semplified version of the transport equations, keeping only significant terms:

Dominant terms

Optics calibration

A precise knowledge and calibration of the LHC beam optics is needed in order to correctly reconstruct the proton kinematics at the IP
\checkmark Nominal optics calculated with MAD-X (accelerator simulation software)
\checkmark Data driven calibrations

- L determined using elastic events $(\xi=0)$ in dedicated alignment run
- D_{x} derived with 2 independent methods:
- focal point $\left(\mathrm{L}_{\mathrm{y}}=0\right)$ in min bias events:

$$
D_{X}=\frac{x_{F}}{\xi_{F}} \quad \text { with } \xi_{F} \sim 4 \%
$$

${ }^{-} \xi_{\text {cмs }}$ vs $\xi_{\text {PPS }}$ in semi-exclusive $\mu \mu$ events

2D (x,y) DISTRIBUTION OF THE PROTON IMPACT POINTS IN THE NEAR (210m) RP

Forward proton kinematics reconstruction

Single-RP method

- Treat each RP as a separate detector
- Only 2 reconstructed variables (dominant term in transport equation)

$$
\xi=\frac{x}{D_{x}} \quad \text { and } \quad \theta_{y}^{*}=\frac{y}{L_{y}(\xi)}
$$

- Limited ξ resolution
- Less sensitivity to systematic uncertainties

Multi-RP method

- Combines measurements of 2 RPs
- Minimization of

$$
\chi^{2}=\sum_{i: \operatorname{RPs}} \sum_{q: x, y}\left[\frac{d_{q}^{i}-\left(T^{i} d^{*}\right)_{q}}{\sigma_{q}^{i}}\right]^{2}
$$

- Significantly improved resolution on ξ
- Optics calibration more critical \rightarrow complex systematic uncertainty model

Forward proton reconstruction @ CMS

PPS in LHC-Run2

During Run 2, PPS was operated with 2 tracking RPs and 1 timing RP per arm

Very high stability in both 2017 and 2018. PPS integrated luminosity in LHC-Run $2>110 \mathrm{fb}^{-1}$
Multiple combinations of β^{*} and crossing angle were used by the accelerator during Run2, mainly for instantaneous luminosity levelling.

Careful optics calibration (especially D_{x}) required for all data taking conditions

Resolution and systematics studies

- Single-RP reconstruction resolution dominated by neglecting θ_{x}^{*} (at high ξ, width of θ_{x}^{*} reduced by LHC collimators)
- Multi-RP reconstruction resolution dominated by detector spatial resolution

Multi-RP reconstruction efficiency

Multi-RP efficiency from tag-and-probe method on minimum bias data. Efficiency contributions:

- detector efficiency (degrades with radiation damage)
- inefficiency from multiple tracks (strip detectors in 2016 and 2017)
- proton hard interaction probability between 210 m and 220 m RPs
- algorithm efficiency

FRACTION OF RECONSTRUCTED MULTI-RP PROTONS, AS A FUNCTION OF $\xi_{\text {MULTI }}$ FOR A SIMULATED PROTON SAMPLE

ξ reconstruction validation

(Semi-)exclusive dimuon events: ξ reconstructed by PPS ($\xi_{\text {RP }}$) compared to $\xi(\mu \mu)$ from di-muon reconstruced in CMS

EXACT FOR EXCLUSIVE EVENTS, MOSTLY WITHIN RESOLUTION FOR SEMIEXCLUSIVE EVENTS

EXCLUSIVE

SEMIEXCLUSIVE

\checkmark Good correlation between $\xi(\mu \mu)$ and the $\xi_{\text {RP }}$ up to $\xi \sim 0.12$
\checkmark Mean and width of the signal distribution well reproduced by the simulation, within the known systematic uncertainty.

Optics, alignment, and related systematics of the proton ξ reconstruction are well understood

LHC-Run 3 and beyond

PPS will operate in Run 3 with an upgraded apparatus:
\checkmark new silicon pixel tracker (with internal motion to mitigate radiation damage)
\checkmark two new timing stations, double-diamond detectors in all planes (expected factor ~ 2 improvement in $p p$ vertex determination)
\checkmark dedicated dijet Level-2 trigger (HLT) line with proton tag, to afford lower p_{T} threshold
While $\mathcal{L} \rightarrow \times 2$, sensitivity expected to increase by $\sim 4-5$, due to improved acceptance (tracking) and backgroud rejection (timing)

Expression of interest for a new setup for HL-LHC [arXiV:2103.02752]

> More in G. Gil Da Silveira' s poster

Summary

\checkmark Precision Proton Spectrometer (PPS) empowers CMS with new capabilities, allowing to tag scattered protons in the 'crowded' LHC environment (pile-up up to ~ 50).
\checkmark PPS has successfully taken data during LHC-Run2.

- Proton kinematics reconstruction algorithms and calibration procedures have been developed and validated.
- Good understanding of the LHC optics in the region at ~200 m from interaction point has been demonstrated.
\checkmark First physics results based on LHC-Run2 data presented at this conference.
\checkmark PPS will continue to operate in LHC-Run 3 with an upgraded apparatus. Increase in sensitivity by factor 4-5 expected.

BACKUP

CONTROL PLOTS AND ACCEPTANCE

DIFFERENCE BETWEEN THE SINGLE-RP ξ RECONSTRUCTION
FROM THE NEAR AND FAR RPs.

DIFFERENCE BETWEEN THE SINGLE-RP AND MULTI_RP
ξ RECONSTRUCTION

Phase space covered by distributions limited by the distances of the RPs from the beam (low ξ) and the LHC aperture (high ξ).

Difference centred at 0 and independent of the reconstructed $\xi_{\text {multi }}$ as expected if the alignment and the optics calibration are correct.

PROTON SCATTERING ANGLES

HORIZONTAL SCATTERING ANGLE

VERTICAL SCATTERING ANGLE

DATA USED TO MODEL THE LIMITATION CREATED BY THE LHC APERTURE

A part from acceptance limitation, distributions symmetric about zero, with no dependence on ξ, as expected

Mean stable over time and close to 0 (within $\pm 10 \mu \mathrm{rad}$) for all data taking period

Proton kinematics reconstruction

Single-RP method

-Treat each RP as a separate detector
$-\xi$ reconstructed from x measured in the RM, using the $x-t o-\xi$ curve

Interpolation among different crossing angle performed, if needed

Fill-to-fill alignment

Horizontal alignment obtained by matching observables from the fill to those from the dedicated alignment run
Relies on reproducibility of the beam optics

Vertical alignment obtained by extrapolating the observed vertical profile to the horizontal beam position

Timing RPs are eventually aligned wrt tracking RPs

Effect of radiation on RP efficiency (2018)

EVOLUTION OF THE RP EFFICIENCY MAP IN THE DETECTOR REGION CLOSEST TO THE BEAM FOR RP 220 FAR (worst case)

Effect of radiation on RP efficiency (2018)

Average efficiency calculated every $\sim 1 \mathrm{fb}^{-1}$ in the critical region around the irradiation peak
Drop in the efficiency due to irradiation clearly visible in the critical region; recovery after each LHC technical stop (TS) due to vertical movement of the RPs.
\rightarrow This plot will be used as monitoring tool in LHC-Run3

