

The ultimate CMS ECAL calibration and performance for the legacy reprocessing of LHC Run 2 data

Raffaella Tramontano on behalf of the CMS collaboration Sapienza Università di Roma & INFN ICHEP 2022 Bologna - 08.07.2022

ECAL: CMS Electromagnetic CALorimeter

A homogeneus, hermetic, high granularity PbWO4 crystal calorimeter...

ECAL Run2 challenge: overlapping interactions

CMS Peak Luminosity Per Day, pp

Nominal luminosity achieved by

focusing beams to enlarge collision probability

Х

Halving time between collisions (50ns to 25ns)

Raffaella Tramontano

Bigger number of interesting events produced

More vertexes to disentangle

Х

ECAL signal amplitudes last for O(100) ns

ECAL challenge: number of overlapping signals - pile up increased

Signal amplitude - prepare for reconstruction

 Pedestals to the pulse shape: Recorded every 40 minutes in Run2 using laser events 	80 70 70 60 50 60 50 40 30 20
 Pulse shape crystal template pulse shapes recomputed every 3-4 fb-1 	
	10

Catching spikes - APD anomalous signals

Signal amplitude reconstruction- algorithm

• Multifit algorithm - treats out of time pile up

- Observed signal = 1 in time pulse + up to 9 out of time pulses
- Fixed pulses shapes, floating amplitude

Multifit performance for PU mitigation Compared to Run1 method for amplitude extraction

Raffaella Tramontano

https://arxiv.org/abs/2006.14359

Crystals ageing - transparency loss correction

CMS DPNotes 2017-023

- Extreme radiation rates
 - Loss in transparency inevitable
- Laser crystal-by-crystal monitoring
 - Checks transparency evolution thought time
 - Iaser system scans all crystals every 40 mins

Crystal response

Monitoring the monitoring system:

Run 2 challenge:

- Bulk of light monitoring correction
- Residual worsening in corrected light output
 - Due to radiation damage on

laser reference diode transmission fibers

Correction

E/p with tracker momentum measurements of W/Z bosons electrons

Energy calibration

CMS DPNotes 2019-038

- Energy resolution
 - Compare and correct signals output in η bins
 - Reduce peak width
 - Combining several correction methods
 - Peak widths $\pi^0 \to \gamma\gamma, Z \to e^+e^-$
 - electrons: E/p, momentum from tracker
- Energy scale: derived from $Z \rightarrow e^+e^-$
 - Peak position from ECAL deposits Corrected to match MC peak position
- Inter-calibration precision better than 1% for e/γ • Better than 0.5% for $|\eta| < 1.5$

Refinements:

JINST 16 (2021) P05014

Semiparametric BDT to refine estimates

Accounts for leakage, material effects, dead channels..

Exploits variables related to:

- EM Shower shape/dimension
- Brehmstralhung energy losses
- Electrons only:
 - combination with angular tracker info

Raffaella Tramontano

ECAL Run2 legacy reprocessing

Standard calibration obtained by chunk of early data for each period

Legacy reprocessing: reconstruction & calibration using all Run2 data

- smaller uncertainties
- Higher sampling refined corrections for different data taking periods and conditions
- "integration" of temporary inefficiencies, transient defects...

Ultimate performance "Legacy" calibration ~40% **better than preliminary!**

Energy measurements wrap up

 $E_{e,\gamma} = \sum_{i} \left[A_i(t) \cdot L_i(t) \cdot C_i(t) \right] \cdot G(\eta) \cdot F_{e,\gamma}$

- Contributions to resolution @ Run2:
 - Intercalibration almost negligible
 - Noise and pile up significant and comparable:
 - Run3: ML algo to control under development
 - Contribution for unaccounted effects significant:
 - Well described by gaussian smearing
 - Stable over time

ECAL performance

- Run 2 Legacy reprocessing: Fine grained calibration in:
 - detector volume
 - time/luminosity
 Essential to the highest quality resolution
 - Run3 Goal: automatize calibration methods involving data
 - Corrections specific for each data taking period

+ ECAL Timing - more in <u>Stefano's talk</u>

- Excellent timing performances
 - Already exploited in LLP searches, spikes hunt
 - Pivotal in HL-LHC for rising pile up rejection

ving data eriod

hunt on

Summary

ECAL reconstruction and calibration are crucial to deliver and preserve ECAL optimal performance

- Proven as a continuous, meticulous job but extremely rewarding challenge
 - Run2 Legacy reprocessing: ~ 1 year of work = 40% better overall performance
- Challenges ahead of us:
 - Noise and Pile Up increasing levels
 - Automatisation of calibration
 - ECAL HL-LHC upgrade
 - **Barrel electronics substitutions:**
 - Cope with HL radiation rates
 - Better exploit timing measurements

Backup

Raffaella Tramontano

Signals localization: clustering algorithms

An **unperturbed** photon/electron EM shower in ECAL crystals array

photon/electron showers within CMS **Shower is spread** due to e/γ interactions with tracker Material effects..

- ES + ECAL clusters above a certain energy threshold = **seed clusters**
- Algorithm hunts for nearest to seed clusters
 - Why a moustache: CMS solenoidal magnetic field spreads radiated energy more in φ than in η
- Refining algorithm on top of mustache SC:
 - ECAL x other detectors info

• Run2:

- Threshold for hits clustering **retuned**
 - Pile up mitigation
 - Noise contamination
- ES adjusted to cope with **increasing irradiation**

Pedestals behavior through time

1 ADC ~ 40 MeV

Towards higher luminosities

HL-LHC: LHC to overcome nominal LHC luminosity by a factor 5 to 7.5

Event recorder @ CMS in 2016 with pile up conditions similar to HL-LHC

ECAL timing developments - more about this in <u>Badder's talk</u>

Fundamental for HL -LHC

Timing info To be combined with timing From novel MTD detector (Expected reso ~40ps)

Raffaella Tramontano

Excellent time resolution for Run1+ Run2 data already plenty exploited:

- LLP searches
- Trigger driven spikes hunt

@ 30 ps **Window holds** ~ 40 vtxs

Refinements: ES for basic ID

ES: counter for charged particles

Essential for Photons/neutral hadrons separation

Run2: to cope with irradiation

MIP response tuning:

in dedicated short runs With high gain for MIP sensitivity

JINST 16 (2021) P05014

