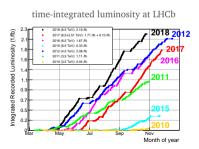
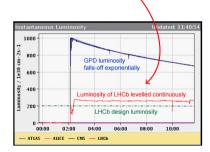
Luminosity at LHCb in Run 3

Elena Graverini, on behalf of the LHCb collaboration

École Polytechnique Fédérale Lausanne

International Conference on High Energy Physics (ICHEP) Bologna, July 6–13, 2022




Luminosity: basics

Luminosity answers the question: at what rate will process j happen at my experimental location?

$$R_j = \mathcal{L}\sigma_j$$

- time-integrated luminosity: necessary to calculate cross sections
- instantaneous luminosity at LHCb: continuous luminosity levelling
 - steer beams to operate the detector in optimal conditions at constant rates

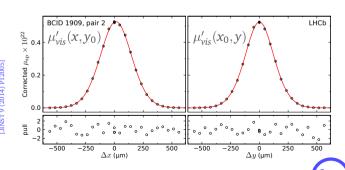
Measuring luminosity

• from visible number of interactions μ_{vis} and effective cross section σ_{vis} :

$$\mathcal{L} = f \frac{\mu_{vis}}{\sigma_{vis}}$$

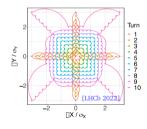
(where f = LHC revolution frequency)

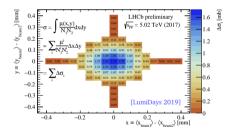
- μ_{vis} measures relative luminosity
 - can be monitored continuously
 - depends on chosen luminometer
- σ_{vis} measures absolute luminosity
 - determined in dedicated scans
 - at LHCb: beam gas imaging (Run 1, 3), van der Meer scans (Runs 1, 2, 3)


Absolute luminosity

- Street of the st
- van der Meer scans performed once per year and per energy in Runs 1+2
- measure beam size by displacing the two beams transversely w.r.t. each other
- μ_{vis} measured per step with all available counters

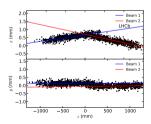
$$\sigma_{vis} = \frac{\int \mu'_{vis}(x, y_0) \, dx \, \int \mu'_{vis}(x_0, y) \, dy}{\mu'_{vis}(x_0, y_0)}$$

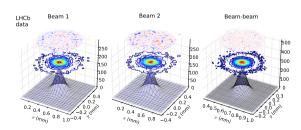

where $\mu'_{vis} \equiv \mu_{vis}/N_1N_2$ and $N_{1,2} =$ populations of colliding bunches at the considered step


[EPJC (2021) 81:26]

More on van der Meer scans

- previous formula assumes factorizability of *x* and *y* beam profiles!
- associated systematics proved nonnegligible [JINST 9 (2014) P12005]
- new: 2-dimensional scan in the central region [V. Balagura, LumiDays 2019]
 - pioneered at LHCb in Run 2, proved most accurate calibration method
 - will be used by other LHC experiments in Run 3

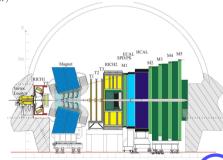


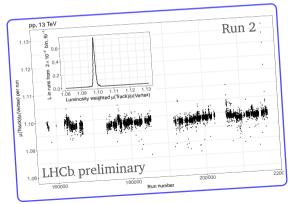

86% of full integral measured directly; extrapolated to the whole plane

- $\langle \mu \rangle$ from 1 (Run 2) \rightarrow 5 (Run 3)
 - counters must be linear to extrapolate calibration from vdM scans (μ < 0.5–1)
 - mini-vdM scan (emittance scan) at physics μ at the start/end of fill, like by CMS, ATLAS

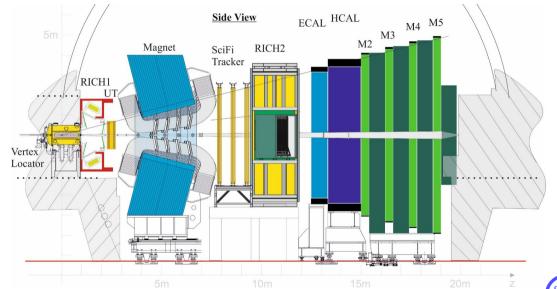
Beam-gas imaging and SMOG2

- excellent spacial resolution of LHCb VErtex LOcator (VELO)
 - reconstruct interactions between LHC beam and residual or injected gas molecules
 - calibrate DOROS beam position monitors from LHC
- SMOG: initially conceived to calibrate luminosity measurement
 - Beam Gas Imaging (BGI) alternative method for absolute lumi calibration, unique to LHCb
 - demonstrated potential for fixed-target physics
- new SMOG2 storage cell installed for Run 3: LHCb can operate efficiently as both a collider and a fixed-target experiment!
- check BGI video at this link

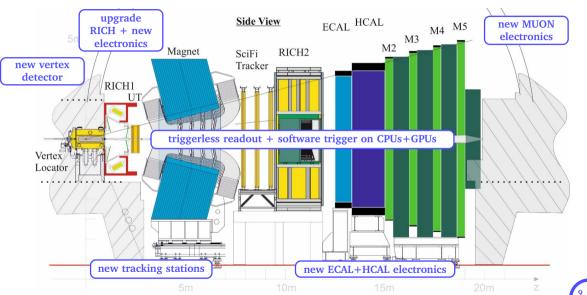



Relative luminosity

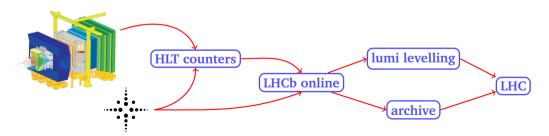
- count interactions during data taking
- use quantities proportional to \mathcal{L} , with efficiency stable in time
- log0 method
 - uses Poisson statistics: $\mu_{vis} = -\log P(0) = -\log (N_{empty}/N_{tot})$
 - mitigates non-linearity and instability
 - in Run 3 $\mu\sim$ 5 might prove challenging
- in Runs 1+2:
 - online luminosity: calorimeter E_T, scintillating pad hits,
 n muon candidates, upstream VELO hits
 - offline luminosity: tracks and vertices in VELO
 - + other counters as cross-checks



Example: VELO counters


- tracks and vertices recorded in LHCb's VErtex LOcator
- log0 method, pp: events with less than 2 tracks or 1 vertex are empty
- luminosity-corrected ratio $\mu_{vis,track}/\mu_{vis,vtx}$ stable to within 0.08% across pp, 13 TeV (Run 2)
 - uncertainty on relative lumi $\leq 0.2\%$
 - best in LHC

The LHCb detector in Run 3



The LHCb detector in Run 3

New challenges!

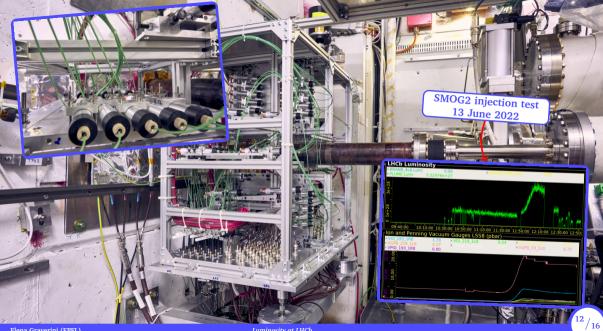
- no hardware trigger (L0) → completely redesigned data taking flow
 - offline-quality CPU+GPU real-time reconstruction
- Run 1+2: calorimeter E_T from L0 provided real-time μ
- re-invent new luminometers for Run 3
- including a new dedicated detector
 - real-time luminosity for lumi-levelling
 - integrated with, but independent from LHCb

A new Probe for LUminosity MEasurements

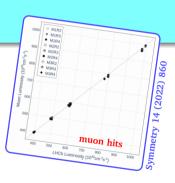
- new LHCb detector, conceived in 2019, now installed and taking data
- ongoing intense commissioning phase

design requirements

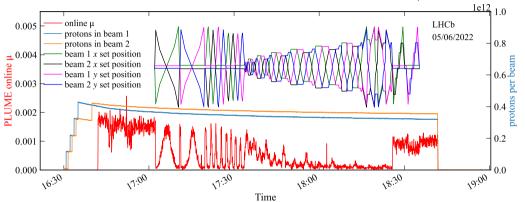
- large signal (high precision) + fast signal (avoid *spillover*)
- radiation resistant (10¹⁴ neutrons/cm²)
- occupancy $\mathcal{O}(1\%)$


PLUME

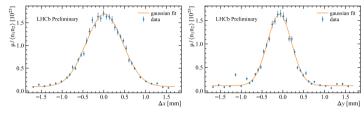
- hodoscope of 24 projective pairs of quartz-window PMTs with quartz tablet in front
 - profit from ATLAS-LUCID experience
 - fast Cherenkov light signal
 - 22 PMT pairs for lumi, 2 for timing
- read out with LHCb calorimeter electronics
- reconstructed tracks + LED light injection system for gain stabilization

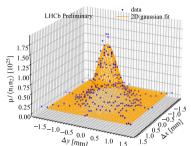


New counters


Requirements

- many counters! cross-check stability + reduce systematics
- response scales linearly with luminosity
- efficiency is stable in time
- number of VELO tracks and vertices.
- number of hits in any detector
- number of clusters in SciFi
- number of coincidences in PLUME
- E_T in calorimeter
- physics channels such as $Z \to \mu\mu$
- these and more observables under study!


First lights...


First LHCb vdM scan on June 5: absolute calibration of PLUME for $\sqrt{s} = 900$ GeV

- PLUME online μ from coincidences in any of 22 lumi PMT pairs
- beam movements shown in arbitrary scale at corresponding time
- two 1D vdM scan followed by 2D scan and length scale calibration

First lights...

- very preliminary analysis!
- many simplifications:
 - positions of beams: LHC set values
 - bunch populations (from LHC) are averaged
 - use PLUME coincidences recorded online every 3 seconds
 - no background subtraction
- 1D and 2D σ_{vis} compatible, beam size $\approx 300 \times 200 \ \mu \text{m}$

Conclusions

LHCb luminosity track record

- record accuracy (1.16%) for luminosity at a bunched hadron collider in Run 1 [JINST 9 (2014) P12005]
 - use of unique beam-gas imaging capabilities
- pioneered 2D van der Meer scans in Run 2
- best time stability of lumi counters in Run 2
 - lumi available at 2% accuracy for Run 2 (pp 13 TeV) [see R. Lavička, LHCP 2022]

new LHCb subdetectors & new electronics for Run 3

- switch to software trigger imposes new challenges for real time luminosity
- re-invent a set of luminosity counters
 - observables from HLT and from experiment control system
 - linear response and stable efficiency are crucial
 - will be calibrated with vdM and cross-checked against each other
- new dedicated detector (PLUME) installed and functioning, being commissioned
 - very preliminary calibration of absolute luminosity at injection energy
- extremely lively commissioning phase :)

Spare slides

16/16

Luminosity at LHCb