Luminosity at LHCb in Run 3

Elena Graverini, on behalf of the LHCb collaboration

École Polytechnique Fédérale Lausanne
International Conference on High Energy Physics (ICHEP)
Bologna, July 6-13, 2022

Luminosity: basics

Luminosity answers the question: at what rate will process j happen at my experimental location?

$$
R_{j}=\mathcal{L} \sigma_{j}
$$

- time-integrated luminosity: necessary to calculate cross sections
- instantaneous luminosity at LHCb: continuous luminosity levelling
- steer beams to operate the detector in optimal conditions at constant rates
time-integrated luminosity at LHCb

Measuring luminosity

- from visible number of interactions $\mu_{v i s}$ and effective cross section $\sigma_{v i s}$:

$$
\mathcal{L}=f \frac{\mu_{v i s}}{\sigma_{v i s}}
$$

(where $f=$ LHC revolution frequency)

- $\mu_{\text {vis }}$ measures relative luminosity
- can be monitored continuously
- depends on chosen luminometer
- $\sigma_{v i s}$ measures absolute luminosity
- determined in dedicated scans
- at LHCb: beam gas imaging (Run 1, 3), van der Meer scans (Runs 1, 2, 3)

Absolute luminosity

- van der Meer scans performed once per year and per energy in Runs $1+2$
- measure beam size by displacing the two beams transversely w.r.t. each other
- $\mu_{\text {vis }}$ measured per step with all available counters

$$
\sigma_{v i s}=\frac{\int \mu_{v i s}^{\prime}\left(x, y_{0}\right) d x \int \mu_{v i s}^{\prime}\left(x_{0}, y\right) d y}{\mu_{v i s}^{\prime}\left(x_{0}, y_{0}\right)}
$$

where $\mu_{v i s}^{\prime} \equiv \mu_{v i s} / N_{1} N_{2}$ and $N_{1,2}=$ populations of colliding bunches at the considered step
[EPJC (2021) 81:26]

More on van der Meer scans

- previous formula assumes factorizability of x and y beam profiles!
- associated systematics proved nonnegligible [נNsT9 (2014) P12005]
- new: 2-dimensional scan in the central region [v. Balagra, LumiDays 2019]
- pioneered at LHCb in Run 2, proved most accurate calibration method
- will be used by other LHC experiments in Run 3

86% of full integral measured directly; extrapolated to the whole plane
- $\langle\mu\rangle$ from 1 (Run 2) $\rightarrow 5$ (Run 3)
- counters must be linear to extrapolate calibration from vdM scans ($\mu<0.5-1$)
- mini-vdM scan (emittance scan) at physics μ at the start/end of fill, like by CMS, ATLAS

Beam-gas imaging and SMOG2

- excellent spacial resolution of LHCb VErtex LOcator (VELO)
- reconstruct interactions between LHC beam and residual or injected gas molecules
- calibrate DOROS beam position monitors from LHC
- SMOG: initially conceived to calibrate luminosity measurement
- Beam Gas Imaging (BGI) alternative method for absolute lumi calibration, unique to LHCb
- demonstrated potential for fixed-target physics
- new SMOG2 storage cell installed for Run 3: LHCb can operate efficiently as both a collider and a fixed-target experiment!
- check BGI video at this link

Relative luminosity

- count interactions during data taking
- use quantities proportional to \mathcal{L}, with efficiency stable in time
- log0 method
- uses Poisson statistics: $\mu_{\text {vis }}=-\log P(0)=-\log \left(N_{\text {empty }} / N_{\text {tot }}\right)$
- mitigates non-linearity and instability
- in Run $3 \mu \sim 5$ might prove challenging
- in Runs $1+2$:
- online luminosity: calorimeter E_{T}, scintillating pad hits, n muon candidates, upstream VELO hits
- offline luminosity: tracks and vertices in VELO + other counters as cross-checks

Example: VELO counters

- tracks and vertices recorded in LHCb's VErtex LOcator
- log0 method, pp: events with less than 2 tracks or 1 vertex are empty
- luminosity-corrected ratio $\mu_{\nu i s, t r a c k} / \mu_{v i s, v t x}$ stable to within 0.08% across $p p, 13 \mathrm{TeV}$ (Run 2)
- uncertainty on relative lumi $\leq 0.2 \%$
- best in LHC

The LHCb detector in Run 3

The LHCb detector in Run 3

New challenges!

- no hardware trigger (LO) \longrightarrow completely redesigned data taking flow
- offline-quality CPU+GPU real-time reconstruction
- Run 1+2: calorimeter E_{T} from L0 provided real-time μ
- re-invent new luminometers for Run 3
- including a new dedicated detector
- real-time luminosity for lumi-levelling
- integrated with, but independent from LHCb

A new Probe for LUminosity MEasurements

- new LHCb detector, conceived in 2019, now installed and taking data
- ongoing intense commissioning phase

design requirements

- large signal (high precision) + fast signal (avoid spillover)

- radiation resistant (10^{14} neutrons $/ \mathrm{cm}^{2}$)
- occupancy $\mathcal{O}(1 \%)$

PLUME

- hodoscope of 24 projective pairs of quartz-window PMTs with quartz tablet in front
- profit from ATLAS-LUCID experience
- fast Cherenkov light signal
- 22 PMT pairs for lumi, 2 for timing
- read out with LHCb calorimeter electronics
- reconstructed tracks + LED light injection system for gain stabilization

New counters

Requirements

- many counters! cross-check stability + reduce systematics
- response scales linearly with luminosity
- efficiency is stable in time
- number of VELO tracks and vertices
- number of hits in any detector
- number of clusters in SciFi
- number of coincidences in PLUME
- E_{T} in calorimeter
- physics channels such as $Z \rightarrow \mu \mu$

- these and more observables under study!

First lights...

First LHCb vdM scan on June 5: absolute calibration of PLUME for $\sqrt{s}=900 \mathrm{GeV}$

- PLUME online μ from coincidences in any of 22 lumi PMT pairs
- beam movements shown in arbitrary scale at corresponding time
- two 1D vdM scan followed by 2D scan and length scale calibration

First lights...

- very preliminary analysis!
- many simplifications:
- positions of beams: LHC set values
- bunch populations (from LHC) are averaged
- use PLUME coincidences recorded online every 3 seconds
- no background subtraction
- 1D and 2D $\sigma_{v i s}$ compatible, beam size $\approx 300 \times 200 \mu \mathrm{~m}$

Conclusions

LHCb luminosity track record

- record accuracy (1.16\%) for luminosity at a bunched hadron collider in Run 1 [JNsT9 (2014) P12005]
- use of unique beam-gas imaging capabilities
- pioneered 2D van der Meer scans in Run 2
- best time stability of lumi counters in Run 2
- lumi available at 2% accuracy for Run 2 ($p p 13 \mathrm{TeV}$) [see R. Lavicika, LHCP 2022]

new LHCb subdetectors \& new electronics for Run 3

- switch to software trigger imposes new challenges for real time luminosity
- re-invent a set of luminosity counters
- observables from HLT and from experiment control system
- linear response and stable efficiency are crucial
- will be calibrated with vdM and cross-checked against each other
- new dedicated detector (PLUME) installed and functioning, being commissioned
- very preliminary calibration of absolute luminosity at injection energy
- extremely lively commissioning phase :)

Spare slides

