

Operational Experience and Performance with the ATLAS Pixel detector at the LHC

ICHEP2022 6-13 July – Bologna - Italy

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

The ATLAS Pixel (+ IBL) detector

	Pixel (3 layers)		IBL (1 layer)] `
Sensor Technology	<i>n</i> +-in <i>-n</i> (only planar)		<i>n</i> ⁺-in <i>-n/n⁺-in-p (planar/3D)</i>	
Sensor Thickness	250 μm		200/230 μm	
Front End Technology	FE-I3 250 nm CMOS		FE-I4 130 nm CMOS	430r
Pixel Size	50 x 400 μm² (short side along R-φ)		50 x 250 μm² (short side along R-φ)	
Radiation Hardness	5 0 Mrad (500 kGy) ~ 1 x 10 ¹⁵ n _{eq} ·cm ⁻²		250 Mrad ~ 5 x 10 ¹⁵ n _{eq} ·cm⁻²	
Barrel	B-Layer	5.05 cm]
<radius> or EndCaps Radius_{Min}</radius>	Layer 1	8.85 cm	2 25 om	
	Layer 2	12.25 cm	3.35 CIII	
	EndCaps	8.88 cm		

2024 modules, 92 M channels, 1.92 m² of silicon

"Production and Integration of the ATLAS Insertable B-Layer"

3 + 1 pixel layers in barrel2 x 3 pixels endcaps

Insertable B-Layer (IBL) added in 2014 (Run 2)

80

8/07/2022

Facing the unexpected @ LHC

"End of Run 2" typical fill:

Bunch crossing (BX) period: 25 ns Pile-up or **µ** (#interactions/bunch crossing) • Average ~ 35 µ levelling at Peak (fill start) ~ 55 ~ 52 (~10 h) Instantaneous luminosity (cm² s⁻¹) Peak ~ 2 x 10³⁴ Integrated luminosity per fill (fb⁻¹) Average ~ 0.5 Level 1 trigger rate (kHz): L1A Rate ~ 86 Run 3 expectations **Total Integrated luminosity 190 fb⁻¹** ~ 290 fb⁻¹ (Run 1 + Run 2) (Run 3) Up to ~480 fb⁻¹ before HL-LHC upgrade

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Pixel operation in Run 2

OCCUPANCY vs PILE-UP

- Occupancy (hit/pixel/event) scales with µ
 → big event size and high trigger rate
 - → high bandwidth usage, up to 70%!

DEADTIME

 Loss of data acquisition time due to Pixel strongly decreased in Run 2 <~ 0.2% (2018)

DESYNCHRONIZATION

Fraction of event identification mismatch <~ 1%

Average μ per lumi block

The Pixel metamorphosis

 Readout electronics/services upgrades and changes of configuration parameters to accommodate for bandwidth limitations/radiation damage.

 IBL: Total Ionising Dose (TID) effect in front-end chips (FE-I4)

→ drift of Thresholds and Time-Over -Threshold (TOT)

regular (~weekly) re-tuning needed.

400

Pixel performance in Run 2

- ع(d₀) [µm] ATLAS Preliminary 350 Data 2012, vs = 8 TeV 0.0 < n < 0.2Data 2015, \s = 13 TeV 300 250 200F 150 100 50F Ω 2015/2012 0.8 4×10⁻¹ 5678910 2 3 20 p_T [GeV] efficiency IBL Overlap r-φ Resolution [μm 0.995 0.99 Hit-On-Track 0.985 0.98 ter 7 fb⁻¹ Avg=98.706±0.004% ATLAS Preliminary 0.975 Run-2 Data After 11.5 fb⁻¹ Avg=98.637±0.005% 0.97 Pixel B-Laver 0.965 After 20 fb⁻¹ Avg=98.439±0.005% 0.96 After 35 fb⁻¹ Avg=98.403±0.006% 0.955 10 Track p₊ [GeV]
 - Impact parameter resolution improvements after IBL insertion (2015)
 - B-Layer Hit-on-track efficiency > 98% (2016)
 - IBL **spatial resolution** (transverse R-φ plane) ~< 10 µm over Run 2.

- dE/dx and cluster size decrease due to the decreased charge collection efficiency (slow slope).
- HV (threshold) increase (decrease) shows gain in dE/dx.
 - however, thresholds increased in 2016 due to bandwidth limitations (B-Layer).

- Charge collection constantly measured via **HV scans**
 - MPV of the fitted Landau cluster charge affected
 → decrease of plateau.

Depletion voltage/leakage current

- **Higher bias voltages** to guarantee a full depletion region.
- Hamburg model predictions matches well data from bias voltage scans (or cross talk) at low fluences.
- Data collected at the begin of each year to confirm predictions/set points for the year ahead.

- Leakage currents quite well described by Hamburg model (annealing, temperature)
 - slightly overestimated towards the end of Run 2.
- Extrapolation to end of Run 3 within the power supply limits.
- → <u>Measurements of sensor radiation damage in</u> <u>the ATLAS inner detector using leakage currents</u>

Fighting the radiation damage

Minimize the impact (without forgetting the long-term picture)

- Detector parameter changes to recover/accommodate for rad. damage
 - HV, thresholds, tunings points.

 Keep the detector cold to avoid reverse annealing (higher depletion voltages) and high leakage currents.

Characterize/model the radiation damage for Run 3

 Development of new radiation damage (digitizer) MC.

- Extensive validation of the new digitizer

 official ATLAS Run 3 MC.
- Exploit the radiation damage MC to train our clustering/tracking algorithms (Mixture Density Network).
- Extrapolate **depletion voltage/leakage current predictions** to the end of Run 3.

8/07/2022

Impact of radiation on FE electronics

Single Event Effect (SEE): big charge deposit in FE electronics can flip the state of global/local memory cells.

- IBL FEs being affected by SEE (2017)
 - → periodical reconfiguration of FE global registers improved the operation stability/data quality.
- As LHC delivered fills with higher integrated lumi (2018):
 - noisy pixels (pixels firing in the empty bunches)
 - quiet pixel (pixels not firing in colliding bunches)

due to SEE in **single pixel latches!**

Measurements of Single Event Upset in ATLAS IBL

Solved by adding the periodical reconfiguration of the single pixel latches

→ <u>clear gain observed during test run (2018)</u>.

Run 3 strategy: mitigate the higher radiation per fill
 (luminosity levelling to higher luminosity/particle flux)
 →Full FE reconfiguration every ~10 minutes (no dead time!)

GEORG-AUGUST-UNIVERSITÄT

Opto-Board replacement during LS2

- Relevant number of VCSEL (laser array) failures during Run 2 (~3%).
 - humidity being the main suspect.
- New Opto-Board production (with new VCSELs) → >400 qualified.
- Selective replacement done (178 OBs) in February 2021.
 - replacement of OBs hosting dead VCSELs
 (25 modules recovered) or VCSEL alive
 with a shifted optical spectrum.
- Sealing of Optoboxes (hosting OBs) to keep the boards dry (humidity concern).
 - ➔ no failures observed so far!

- Detector kept **OFF (and cold)** most of the time.
 - Pixel (C_3F_8 evaporative) and IBL (CO_2 bi-phase) cooling very stable.
- Successful yearly maintenance of cooling systems
 - a few weeks at room temperature, 43 (23) days in Pixel (IBL).
- A new thermosiphon system will serve as ID Run 3 official cooling.

Temp set point (LS2)	PIXEL	IBL
Detector OFF	-5 °C	-7.5°C
Detector ON (Cosmics)	-20 °C	-20°C

• Turn ON two weeks every two months

- Calibrations and cosmic data taking
- Monitoring noise and depletion voltage (annealing negligible)
- Test of Run 3 configs

Vth	Run 2 (End Of)	Run 3 (Start of)	ster Ch
IBL	2000 e	1500 e	Clus
B-Layer	4300 e/ 5000 e	3500 e/ 4300 e	aver
Layer 1	3500 e	3500 e	ģ
Layer 2	3500 e	3500 e	
Disks	3500 e	3500 e	

- End of LS2 (cosmics) and begin of Run 3 (900 GeV collisions) used to test new configurations with increased HV and lowered thresholds.
- Effect of radiation damage on cluster charge data, very well reproduced by new Radiation Damage MC!
- Fraction of tracks with Pixel hits slightly affected in the central part of the detector (short silicon path traversed and higher radiation damage).

- Spatial resolution (r-phi and z) computed using the overlap region:
 - well reproduced by new Radiation Damage MC.
 - data improvements by using MDN and training it on Rad. Dam. MC samples.
- Limited effect of radiation damage on the tracking performance for the Run 2 fluence: impact parameter d₀ resolution well reproduced by both MC.

Conclusion and outlook

- Several operational challenges, upgrades and adjustments in Run 2:
 - strong effort to consolidate the detector system
 - FE thresholds and bias voltages changed almost yearly.
- Pixel data taking efficiency and data quality reached their peaks.

However, clear impact of radiation in inner Pixel layers!

- Understand and forecast the effects of radiation on sensors:
 - new digitization model (fully ready/included in ATLAS Run 3 MC)
 - so far, small implications for tracking/vertexing.
- Limit the impact on FE electronics.
- Use cold temperatures (possibly -25°C) to better operate the Pixel in Run 3.
- Radiation damage is a key ingredient to plan the near future (Run 3)..
 .. in view of the HL-LHC trackers.

Back-up

- IBL Total Ionizing Dose (TID) effect causing relevant increase of FE-I4 currents
 - Induced by the usage (~Millions) of 130 nm IBM transistor technology
 - Known to have a special leakage current evolution

<u>"Production and Integration of the ATLAS Insertable B-Layer"</u> JINST paper for more info about IBL

- The Run 1 Pixel read-out system went through a series of upgrades using the new IBL read-out:
 - Layer2 (2015/2016 Winter Shutdown)
 - Layer1 (2016/2017 Winter Shutdown)
 - B-Layer/Disks (2017/2018 Winter Shutdown)

- Overcome bandwidth limitations but also enhance debugging capability and Sw/Fw flexibility.
- Finally in 2018, one unified read-out system that should bring Pixel many advantages on a longer term:
 - the operation of different type of FEs will always be there but...transparent for most of the operations!

A

Pixel operational parameters in 2018

Threshold	2017	2018		
IBL	2500e, ToT>0	2000e , ToT>0		
B-layer	5000e, ToT>5	4300e(*), ToT>3		
Layer-1	3500e, ToT>5	3500e, ToT>5		
Layer-2	3500e, ToT>5	3500e, ToT>5		
Endcap	4500e, ToT>5	3500e , ToT>5		
* central Eta: 4300e _ high Eta: 5000e				

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Run 2 Bias Voltage Evolution

HV	2015	2016	2017	2018
IBL	80V 🗖	🔶 150V 🗖	🔶 350V 🛛	<mark>↓</mark> 400V
B-layer	250V	350V	350V	400V
Layer-1	150V	200V	200V	250V
Layer-2	150V	150V	150V	250V
Endcap	150V	150V	150V	250V

Keep adjusting threshold and HV but... <u>limitations on the read-out</u> <u>bandwidth</u> if thresholds decreased too much!

ATLAS Run2 benchmark L1Trigger = 100 kHz <µ> = 60

Module to read-out system bandwidth usage needs to stay within 80%

Fighting the reverse annealing

- Keeping the detector cold during
 LS2 to prevent reverse annealing
 - keep the depletion voltage under control (B-layer, IBL).
- Warm up periods unavoidable due to the ID maintenance during LS2
- Target to stay warm for < 60 days during the LS2.
- Detector warm for 43 (23) days in Pixel (IBL)
- Exploring colder operating set points (-25°C/-30°C).for late Run 3.

Pixel Leakage currents

- Measured leakage currents quite well described (annealing, temperature dependence) by the Hamburg Model but:
 - scaling factor per layer and z bin is required
 - towards the end of Run 2, the leakage currents seem overestimated.
- **Pixel:** Leakage current per module expected at the end of Run 3 within the power supply limitation (< 2 mA per sensor).

z-dependence comparisons

Fluence-to-luminosity conversion factors extracted from the leakage current, Lorentz angle and Depletion Voltage measurements:

- less fluence at at high |z| on IBL data respect to Pythia + FLUKA/Geant4 predictions
- more flat distributions for outer Pixel layers.

Radiation damage studies

 New Pixel digitization model was developed and is now under validation before entering the official ATLAS simulation

Recent paper available here: <u>JINST 14 (2019) 06 P06012</u>

- Charge carriers will drift toward the collecting electrode due to electric field, which is deformed by radiation damage (double peak).
- Their path will be deflected by magnetic field (Lorentz angle) and diffusion.
- Electron and hole lifetime inversely proportional to fluence:
 - → charge trapping,
 - → reduction of the collected charge.
- Available for both Planar and 3D sensors.
 - → due to performance constraints (CPU), not used in IBL 3D and Pixel Disks

8/07/2022

25

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Leakage current vs Temperature

In order to retrieve the optimal E_{eff} for the temperature correction of the I_{Leak} , several temperature scans were taken.

$$I_{\text{leak}}(T_{\text{R}}) = I_{\text{leak}}(T) \left(\frac{T_{\text{R}}}{T}\right)^2 \exp\left[-\frac{E_{\text{eff}}}{2k_{\text{B}}}\left(\frac{1}{T_{\text{R}}} - \frac{1}{T}\right)\right]$$

Last one on September 2021:

- 20 °C setpoint temp. IBL: 0.30 +- 0.10 mA
- 17°C setpoint temp.
 IBL: 0.41 +- 0.12 mA
- 14°C setpoint temp. IBL: 0.56 +- 0.15 mA
- 11°C setpoint temp IBL: 0.76 +- 0.21 mA

Temperature trends

Leakage current trends

HV evolution

HV settings have been adjusted to ensure a well depleted sensor:

→ HV increase in all the layers in 2018!

RUN-2 HV				
HV	2015	2016	2017	2018
IBL	80V 🗖) 150V 🗖	눶 350V 🗖	↓ 400∨
B-layer	250V	350V	350V	400V
Layer-1	150V	200V	200V	250V
Layer-2	150V	150V	150V	250V
Endcap	150V	150V	150V	250V

 In order to avoid to run with the detector not fully depleted, Pixel should be kept cooled as long as possible during the LS2 (2 years long).

FE-I4 SEU studies

8/07/2022

0

Fraction of Broken Primary Clusters

0.005 900045 0.004 0.004 0.004 0.0035

C 0.003 0.0025 0.002 0.002 0.0015 0.001 0.001 0.001

0.005

0.004

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Results from 2022 Pub Note

