Reconstruction and physics opportunities of long-lived particles decaying downstream of the LHCb magnet

Joan Ruiz-Vidal

IFIC (Universitat de València-CSIC)

on behalf of the $\ensuremath{\textbf{LHCb}}$ collaboration

July 8, 2022

CSIC

Reporting on CERN-LHCb-DP-2022-001 (in preparation)

Joan Ruiz-Vidal (IFIC Valencia)

Phyiscs and reconstruction of LLP @LHCb

July 8, 2022 1/18

LHCb detector and track types

Int.J.Mod.Phys.A 30 (2015) 07, 1530022

LHCb detector

- Optimized for c- and b-hadron physics, fully instrumented at high η
- Physics program expanded beyond this
- Excellent PID: RICH1-2, colorimeters (ECAL, HCAL), muon chambers (M1-M5)
- Tracking system: three subdetectors (VELO, TT, T1-T3), dipole magnet

LHCb detector and track types

Int.J.Mod.Phys.A 30 (2015) 07, 1530022

LHCb detector

- Optimized for c- and b-hadron physics, fully instrumented at high η
- Physics program expanded beyond this
- Excellent PID: RICH1-2, colorimeters (ECAL, HCAL), muon chambers (M1-M5)
- Tracking system: three subdetectors (VELO, TT, T1-T3), dipole magnet

Track types

- Core LHCb physics program: Long (and Downstream) tracks
- This talk: opportunities with unused T tracks

Phyiscs and reconstruction of LLP @LHCb

Physics Goals

 \varLambda hyperon dipole moments

BSM long-lived particle searches

. . .

Electric and magnetic dipole moments

Electric Dipole Moment (EDM)

- Matter–antimatter asymmetry
- Sakharov conditions \supset C and CP violation
- Sources of CP Violation: SM (not enough) and BSM
- A golden observable for new CPV sources: Electric Dipole Moment (EDM)

Magnetic Dipole Moment (MDM)

- Gives information on the baryon spin structure
- MDM of lowest-lying baryon octet (p, n, Λ, Σ, ...) was key to assess the quark model
- Baryon MDM nowadays: recurrent benchmark to compare non-perturbative QCD methods

Electric and magnetic dipole moments

Definitions. EDM (δ) and MDM (μ)

$$\delta = \int \boldsymbol{r}
ho(\boldsymbol{r}) d^3 r \qquad \mu = rac{1}{2} \int \boldsymbol{r} imes \boldsymbol{J}(\boldsymbol{r}) d^3 r$$

Quantum-mechanical description:

$$\delta = d\mu_N \frac{\mathbf{S}}{2}$$
 $\mu = g\mu_N \frac{\mathbf{S}}{2}$

Energy of a system

$$H = -\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B} \qquad \stackrel{I}{\longrightarrow} \qquad +\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$
$$\stackrel{P}{\longrightarrow} \qquad +\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$

T

The EDM violates T and P \Rightarrow **CP violation**

Map of the EDM Field

Inspired by N. Yamanaka. Springer Theses (2014)

 Any signal of nonzero EDMs originates in new physics (in current/planned experiments)

* see poster by Giorgia Tonani

Measurement at LHCb

Experiment concept: spin precession in EM field

$$\frac{ds}{dt} = s \times \Omega , \quad \Omega = \frac{\mu_N}{\hbar} \left[g \left(B - \frac{\gamma - 1}{\gamma} (u \cdot B) u \right) + d\beta u \times B \right],$$

Measurement at LHCb

Experiment concept: spin precession in EM field

$$\frac{d\boldsymbol{s}}{dt} = \boldsymbol{s} \times \boldsymbol{\Omega} , \quad \boldsymbol{\Omega} = \frac{\mu_{N}}{\hbar} \left[\boldsymbol{g} \left(\boldsymbol{B} - \frac{\gamma - 1}{\gamma} (\boldsymbol{u} \cdot \boldsymbol{B}) \boldsymbol{u} \right) + \boldsymbol{d} \beta \boldsymbol{u} \times \boldsymbol{B} \right].$$

Proposal for Λ baryons at LHCb

- Large initial longitudinal pol. from weak decays *e.g.* $\Lambda_b^0 \rightarrow \Lambda J/\psi$, $|\mathbf{s}_A| \approx 100\%$
- Fit angular distribution with T tracks
 → get final polarization
- Expected improvement on A dipole moments by two orders of magnitude (Run1-Run4)

Previous measurements at Fermilab: PRD 23 (1981) 814 (EDM), PRL 41 (1978) 1348 (MDM)

BSM long-lived particle searches

- Long-lived particles predicted by a plethora of new physics models see reviews in *e.g.* Rept.Prog.Phys. 85 (2022) 2, 024201 ; Eur.Phys.J.C 80 (2020) 12, 1177
- Several searches by LHCb using long and downstream tracks see last analyses Eur.Phys.J.C 77 (2017) 12, 812; Phys.Rev.Lett. 124 (2020) 4, 041801; Eur.Phys.J.C 81 (2021) 3, 261; Eur.Phys.J.C 82 (2022) 4, 373
- T tracks: give access to decays taking place at 3-7 meters from the pp collision point → greatly extending the lifetime coverage, up to ~ few ns

Reconstruction challenges

Momentum resolution

Track extrapolation

Vertex efficiency

Crossing vertices

misID $\Lambda/K_{\rm S}^0$

Reconstruction challenges (I)

Low momentum resolution

foremost source of challenges

$$\left. \frac{\sigma_p}{p} \right|_{T \ track} \sim 30\% \qquad \left. \frac{\sigma_p}{p} \right|_{Long} \sim 0.5\%$$

- Measured **track curvature** induced by residual **B** in between T1-T3
- Improved to 10% by constraining masses and vertex positions with Decay Tree Fitter (DTF)

 \rightarrow exclusive \varLambda production modes

$$\Lambda_b^0 \to \Lambda(\to \underbrace{p \pi^-}_{T \ tracks}) J/\psi(\to \underbrace{\mu^+\mu^-}_{Long})$$

DTF Nucl.Instrum.Meth.A 552 (2005) 566-575

Reconstruction challenges (I)

Low momentum resolution

foremost source of challenges

$$\left. \frac{\sigma_p}{p} \right|_{T \ track} \sim 30\% \qquad \left. \frac{\sigma_p}{p} \right|_{Long} \sim 0.5\%$$

- Measured track curvature induced by residual *B* in between T1-T3
- Improved to 10% by constraining masses and vertex positions with Decay Tree Fitter (DTF)
 - \rightarrow exclusive \varLambda production modes

$$\Lambda_b^0 \to \Lambda(\to \underbrace{p \pi^-}_{T \text{ tracks}}) J/\psi(\to \underbrace{\mu^+\mu^-}_{Long})$$

DTF Nucl.Instrum.Meth.A 552 (2005) 566-575

Phyiscs and reconstruction of LLP @LHCb

July 8, 2022 10 / 18

Reconstruction challenges (II)

Extrapolation of the T track through an <u>intense</u> and <u>inhomogeneous</u> magnetic field over long distances

- Fast polynomial extrapolation not accurate
- **Overcome** by using full equation of motion, solved numerically with 5th-order Runge-Kutta method

Extrapolation tools CERN-LHCB-2007-140

Reconstruction challenges (III)

Low vertex efficiency

- Find decay vertices with T track pairs
- **Steps forward** with *ad hoc* vertexing algorithms
 - Recovered 20% of events by adjusting convergence criteria in x/y coordinates
 - Investigating effects of kinematically constrained fits and tracking errors

- ----- Armenteros-Podolanski veto
- ---- Total

Reconstruction challenges (IV)

Vertices from crossing tracks

Strong bias on vertex z position ($\sim 1 \text{ m}$) Wrongly assigned to 2nd track-crossing point Worsens helicity angle resolution

Impractical to use the event displays. Need for topological variables to separate these events and study them.

\Rightarrow horizontality

Reconstruction challenges (IV)

Vertices from crossing tracks Strong bias on vertex z position ($\sim 1 \text{ m}$) Wrongly assigned to 2nd track-crossing point Worsens helicity angle resolution

Source of bias identified. Exploring new variables and custom vertexing algorithms to recover true vertex Effect reduced in decays with larger Q-value (larger opening angle): $K_s^0 \rightarrow \pi^+\pi^-$

Joan Ruiz-Vidal (IFIC Valencia) Phyiscs and recons

Phyiscs and reconstruction of LLP @LHCb

July 8, 2022 13 / 18

h = -1

Reconstruction challenges (V)

Particle identification for $\Lambda / K_{\rm s}^0$

Misidentified p / π^+ results in cross ٢ contamination of

$$\Lambda
ightarrow p\pi^-$$
 and $K^0_{
m s}
ightarrow \pi^+\pi^-$

- Low momentum resolution: overlapping mass peaks
- PID information not used in Run II

Particle identification for Λ / $K_{\rm s}^{\rm 0}$

• Misidentified $p \ / \ \pi^+$ results in cross contamination of

$$\Lambda \to \ensuremath{\textit{p}} \pi^-$$
 and $\ensuremath{\textit{K}_{\rm S}^{\rm 0}} \to \ensuremath{\pi^{+}} \pi^-$

- Low momentum resolution: overlapping mass peaks
- PID information not used in Run II
- **Discrimination possible** with Armenteros-Podolanski method Different \vec{p} carried by p/π^- vs. π^+/π^-
- PID information to be used for Run III LHCB-FIGURE-2022-008

very preliminary

Joan Ruiz-Vidal (IFIC Valencia)

Phyiscs and reconstruction of LLP @LHCb

Real data: first results

Analysis strategy

Objective: demonstrate feasibility of analysis with T tracks by accurately determining mass peaks in data

 $\Lambda^0_b
ightarrow \Lambda J\!/\psi$ decays: analysis of Run II data (6 fb⁻¹)

- Trigger on detached muon pair from $J\!/\psi \to \mu^+\mu^-$
- Full-event information saved on disk, allowing to rerun reconstruction algorithms offline
- Selections
 - Preselection based on kinematical variables
 - Multivariate classifier HBDT with kinematical, topological, and fit quality variables
 - Veto on physical backgrounds using (1) Λ⁰_b mass and (2) Armenteros-Podolanski method

Invariant mass

CERN-LHCb-DP-2022-001 LHCB-FIGURE-2022-009

 $\sigma_{m(\Lambda)} \approx 8 \text{ MeV}$ $\sigma_{m(\Lambda_{h}^{0})} \approx 41 \text{ MeV}$

Mass peaks with reconstructed and combined T tracks at LHCb 6140 $\Lambda_b^0 \rightarrow \Lambda J/\psi$ signal candidates

Joan Ruiz-Vidal (IFIC Valencia)

Phyiscs and reconstruction of LLP @LHCb

Prospects and conclusions

Prospects

- Custom vertexing algorithms to increase efficiency and avoid crossing-track vertices
- Exploit RICH2 information to improve momentum resolution
- **Run I+II**: pilot measurement of Λ dipole moments with $\Lambda_b^0 \to \Lambda J/\psi$ decays
- Run III: versatile software-based trigger system in Run III
 - ▶ gives access to more abundant Λ production modes (approx. ×10⁴) e.g. $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$, $\Xi_c^0 \to \Lambda K^- \pi^+$, $\Xi_c^0 \to \Xi^- (\to \Lambda \pi^-) \pi^+$;
 - allows to search for elusive BSM LLP signals

Conclusion

- Adding spin precession measurements and extending the range of LLP searches to the LHCb physics program
- Challenging reconstruction of decays downstream of the LHCb magnet
- Demonstrated feasibility with $\Lambda_b^0 \to \Lambda J/\psi$ and $B^0 \to K_s^0 J/\psi$
- All the details in a new article to appear in the next few weeks

CERN-LHCb-DP-2022-001

backup

Lifetime coverage (dashed lines) of different track types through their reconstructibility in LHCb (colour axis) for $B^0 \to K^{(*)} h^0 (\to \mu^+ \mu^-)$. Decay channel motivated in Eur.Phys.J.C 80 (2020) 7, 669

