

Precision luminosity measurement with proton-proton collisions at the CMS experiment in Run 2

Angela Giraldi on behalf of the CMS Collaboration

ICHEP 2022, XLI International Conference on High Energy Physics Bologna (Italy), 6-13/07/2022

Luminosity at LHC Run 2 What is luminosity?

Instantaneous luminosity is a measure of collision rate

Measured online and delivered to control rooms to optimise beam conditions

Integrated luminosity is a crucial input to cross section

measurements $\sigma(pp \to X) = \frac{N(pp \to X)}{\int \mathscr{L} dt}$

Target precision: ≤1%

More in Hamed Bakhshiansohi's <u>talk</u>

- <u>Units of luminosity: (area · time)-1</u>
 - Instantaneous luminosity: Hz/µb
 - Integrated luminosity: fb⁻¹

Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022 DESY.

Determined from Van der Meer scans

DESY.

Van der Meer Method How to calibrate luminosity at CMS?

- Van der Meer (VdM) scans: beams <u>scanned</u> across each other <u>transversely under special run conditions</u>
 - Determine the beam shapes in x and y from scan of rates for different transverse beam separations

DESY. Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022

Beam Position Monitoring (I) Do we know where the beams are?

- **Orbit drift:** time-dependent movement of beams away from nominal orbit
 - Measured on head-on collisions, before/after each scan
 - Linear interpolation to correct from position monitors (DOROS & ARC)

Correction of $\sigma_{
m vis}$: +0.2 to +1.0% Uncertainty: 0.1%

- **Length scale calibration (LSC)** of nominal beamspot position with vertices reconstructed in the tracker
 - Uncertainty on beam separation due to the response of the steering dipoles
 - Linear interpolation of the consistent slope
 - Applied as a scale factor *

Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022 DESY.

Correction of $\sigma_{
m vis}$: -1.3% Uncertainty: 0.3%

Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022 DESY.

- Rates and 3D-beamspot information from each scan step of any VdM scan
 - Reconstruct 3D bunch proton densities as a function of time from simultaneous unbinned maximum likelihood fit (three-components Gaussian function)

Factorisation Bias (II) How much we can rely on the VdM scan technique?

Beam Imaging Scan

Requires <u>special VdM scans</u>: Beam Imaging (BI) or single-beam scans

Only one beam moves at a time with small steps -> four scans: 1X, 1Y, 2X, 2Y

Reconstructed vertices from all steps into one cumulative histogram

Rate corrections

- arising from pp collisions

Detector stability and linearity How to assess remaining systematic effects?

- Stability: change of detector conditions over time
 - Cross-detector stability from independent systems
 - Invalidated data highlighted in red *

Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022 DESY.

Run 2 Luminosity at 13 TeV

nn 13 Ta\/		2015	2016
pp, is iev		<u>Eur. Phys. J. C 81 (2021)</u>	
Recorded luminosity	[fb-1]	2.27	36.3
Total uncertainty	[%]	1.6	1.2
beam currents	[%]	0.2	0.2
orbit-drift	[%]	0.2	0.1
VdM fit & consistency	[%]	0.6	0.3
length scale	[%]	0.2	0.3
beam positions	[%]	0.8	0.5
beam-beam effects	[%]	0.5	0.5
factorisation bias	[%]	0.5	0.5
linearity	[%]	0.5	0.3
stability	[%]	0.6	0.5

* preliminary

Emittance Scans Any other methods for integration?

- **Emittance scans** as powerful tool for LHC diagnostics
 - <u>Short VdM scans</u> at start and (often) at end of physic fill in 2017 & 2018 at CMS

 - Each luminometer is independently calibrated *
 - Ratios of luminometers used as a final validation

Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022 DESY.

<u>Monitor changes</u> in detector efficiency and improve understanding of luminosity measurement during the year

Summary

Luminosity is a measure of the collision rate

- ♦ A precise luminosity measurement is crucial for cross section measurements.
- At CMS, the precise luminosity measurement is calibrated with the <u>Van der Meer method</u> using beam-separation scans, and integrated over time and pileup

Any sources of systematic effects studied in details to achieve a high precision

- The CMS luminosity measurement for the 2016 data with a precision of 1.2% in the most precise Run 2 result to date
- Improved luminosity measurement with proton-proton collision for 2017-2018 data soon!
- Results for other datasets available

More in Krisztián Farkas's poster

♦ PbPb, etc...

Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022 DESY.

More in Nimmitha Karunarathna's <u>poster</u>

Additional Material

DESY. Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022

VdM Scan program

Run 2 Luminosity at 13 TeV

Luminometers: Pixel Cluster Counting

- Very large number of pixel
 - Very small probability for two charged particles to hit same pixel
 - Response very linear to pileup (studied also in MC) *
 - Only use pixel modules that were fully operational during full data-taking period
 - Do not use innermost pixel layer due to large dynamic inefficiency *

Calibration: Orbit Drift

- Linear interpolation to correct nominal positions during VdM scans
- Impact on sigma_vis from DOROS/ARC average: +0.2% up to 1.0%
- Uncertainty from DOROS/ARC difference: 0.2% (2015), 0.1% (2016)
- **DESY.** Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022

- DOROS BPMs near CMS behind steering magnets
- ARC BPMs in LHC arcs adjacent to CMS
- Measure beam positions during head-on collisions: before & after scans, at central steps

Calibration: Beam-beam effects Electromagnetic interactions between the proton beams

- Coherent deflection of beams away from
 Incoherent deflection at per-particle level impacts proton
 each other due to electric repulsion
 distributions
 - calculated analytically
 - impact on sigma_vis: +2.0% (2015), +1.6%
 (2016)

- dynamic evolution of beta star -> changes measured luminosity
- calculated numerically with dedicated particle tracking simulation
- impact on sigma_vis: -1.7% (2015), -1.4% (2016)

Calibration: Residual Beam Movements

- Evaluate beam positions after all known effects were taken into account
- Separate measurements for both beams
 - Observe antysimmetric systematic structure between two beams
- Study performed for first time
- Relevant for sigma_vis: systematic change of beam separation

Calibration: Visible cross section

- Good consistency of sigma_vis measured for different bunch crossings and scan pairs
- Calibration uncertainty dominated by residual beam movement

Source	2015 (%)	2016 (%)	Со
Normalization uncertainty			
Bunch population			
Ghost and satellite charge	0.1	0.1	Ye
Beam current normalization	0.2	0.2	Ye
Beam position monitoring			
Orbit drift	0.2	0.1	No
Residual differences	0.8	0.5	Ye
Beam overlap description			
Beam-beam effects	0.5	0.5	Ye
Length scale calibration	0.2	0.3	Ye
Transverse factorizability	0.5	0.5	Ye
Result consistency			
Other variations in $\sigma_{\rm vis}$	0.6	0.3	No

Beam Imaging Results

Stability & Linearity

DESY. Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022

Efficiency Scans

- Emittance scans at the beginning and at the enc luminometers over time.
- Efficiency is defined as the change of the calibrat to the Van der Meer (VdM) calibratioon.
- The plot shows all 2017 pp data and 2018 pp data for HFET (forward hadron calorimeter (HF), transverse energy (ET) counting algorithm for luminosity).
 - Due to improved beam quality and more consistent filling schemes during operation in 2018 spread between the points is minimized (in 2017 filling scheme was changed couple of times).
 - The 3% step-like change in the efficiency is detector performance change after the extended end of year technical stop (YETS).
 - * The observed slope is due to a radiation damage of the detector. The slope measured from emittance scans (orange line) is slightly steeper than it was predicted in the HCAL aging model (red line).

DESY. Precision luminosity measurement with p-p collisions at the CMS experiment in Run 2 | Angela Giraldi, 08.07.2022

Emittance scans at the beginning and at the end of LHC fills were used to monitor the stability of the

Efficiency is defined as the change of the calibration constant measured in emittance scans with respect

