

PROTOTYPING SERIAL POWERING WITH RD53A AND ITKPIXV1.1

FLORIAN HINTERKEUSER FOR THE ATLAS COLLABORATION

06.07.2022

INTRODUCTION

- New all-silicon ATLAS inner detector for HL-LHC: Itk
 - Same volume as current tracking detector, see also talk by S.
 D'Auria earlier this session, poster by B. Moser
- Pixel detector consists of O(10k) multi-chip modules
- One design goal: Excellent performance with minimal material budget
 - Use a serial powering scheme

	ATLAS Pixel Detector + IBL	ITk Pixel Detector
Modules	2000	8500
Pixel Size	50x400 μm ² or 50x250 μm ²	50x50 μm² or 25x100 μm²
Readout Channels	80 million	5000 million
Silicon Area	1.7 m ²	14m ²
TID	500 kGy	10 MGy
Fluence	10 ¹⁵ n _{eg} /cm ²	1.4x10 ¹⁶ n _{eg} /cm ²
Trigger Rate	100 kHz L1	4 MHz LO
FE Data Rate	160 Mbps	5.12 Gbps
Powering	parallel	serial
Cooling Budget	15 kW	100 kW

Current ATLAS tracking detector

https://atlas.web.cern.ch/Atlas/GROU PS/PHYSICS/PUBNOTES/ATL-PHYS-PUB- 2 2021-024/

SERIAL POWERING SCHEME

- N modules connected in series

- Each module consists of *m* readout chips in parallel
- Total current defined by single module
 - Reduces power losses on cables, material budget, requires less space
- **But:** Module is not an ohmic resistor
- On-chip SLDO regulators convert I_{in} to constant readout chip supply voltage V_{DD}
 - Module now has ohmic characteristic
 - Defined by resistor R₃ and scaling factor k

SERIAL POWERING SCHEME

- N modules connected in series

- Each module consists of *m* readout chips in parallel
- Total current defined by single module
 - Reduces power losses on cables, material budget, requires less space
- **But:** Module is not an ohmic resistor
- On-chip SLDO regulators convert I_{in} to constant readout chip supply voltage V_{DD}
 - Module now has ohmic characteristic
 - Defined by resistor R₃ and scaling factor k

PLANAR QUAD SP CHAIN

- In Bonn: Serial powering prototype to investigate the electrical behaviour of current-generation pixel modules in a serial powering "^{Type-0" serion} chain
- Up to 8 quad modules on a local support, serial chain GND decoupled from system GND, EoS-Card offers daisy chaining
- Compatible with RD53A and future ITkPixV1.X modules
 - RD53A has three FE flavours (SYNC, LIN & DIFF), ITkPixV1 only DIFF
- Dedicated services designed for this prototype, offers easy-to-access duad c Quad c
- Module performance & SLDO measurements with RD53A modules

Startup measurements with ITkPixV1.1 digital modules
 7/6/2022

RD53A PLANAR SERIAL POWERING CHAIN – MODULE IV CURVES

- Measure SLDO IV curve for each quad in serial chain
 - Target working point: V_{ofs} = 0.9 V, $V_{in} \approx$ 1.6 V @ lin = 4.5 A
 - Measure SLDO voltages using on-chip MUX
 - Compare with Spice model fed with wafer-probing data
- Measure on-module current via slope resistor R₃ and scaling factor k
 - R₃ and k define slope of SLDO input IV
 - Useful to determine minimum current headroom

RD53A PLANAR SERIAL POWERING CHAIN – MODULE IV CURVES

- Example: Module SPQ14
 - $V_{IN_A,D}$ tied together on flex
 - > V_{IN} nearly same for all SLDOs
- Good agreement with expectation

Spice	Full SPQ14
Slope	0.15 V/A
Offset	0.84 V

RD53A PLANAR SERIAL POWERING CHAIN – CURRENT SHARING

- Estimate on-module current distribution using voltage drop on SLDO slope resistors

SPQ18

SPO16

SPO15

SPQ14

SPO13

SPQ12

SPQ11

- Scaling factor *k* from slope fit on wafer-probing data

- Expect $(I_{mod} I_{in}) \approx 0$
 - Large **uncertainties** on k O(10%)
- Generally meets expectation
- Large slope on module SPQ18 unexpected
 - Likely due to incomplete wafer probing data

RD53A PLANAR SERIAL POWERING CHAIN – CURRENT SHARING

- Estimate on-module current distribution using voltage drop on SLDO slope resistors
- Scaling factor *k* from slope fit on wafer-probing data

- Estimate module current I_{mod} by scaling current through Rext
- Plot relative current sharing between
 SLDOs on a quad (ideal case: 13 % Digital,
 12 % Analog)
- Roughly fits expectation
- Slope understood as differing k(I_{in}) dependencies for each SLDO

RD53A PLANAR QUAD SP CHAIN – MODULE YIELD

- Most modules working
 - SPQ10_FE0 has faulty SLDO, high noise, masked in scans
 - SPQ13: very high sensor leakage O(100uA), not tunable, masked in scans
 - Both known from reception tests
- SPQ11 lost during operation

RD53A PLANAR QUAD SP CHAIN – MODULE YIELD

- Analog test injections @ 2ke threshold
 - LIN & DIFF FE tuned, SYNC untuned

RD53A PLANAR SERIAL POWERING CHAIN – MODULE PERFORMANCE

- For all modules: tuning of LIN & DIFF to 2ke & 1ke, measure threshold distr., noise
 - Shown are mean values & distribution widths
- Fits results from reception tests
 - Negligible difference between stand-alone and SP chain

RD53A PLANAR SERIAL POWERING CHAIN – MODULE PERFORMANCE

- For all modules: tuning of LIN & DIFF to 2ke & 1ke, measure threshold distr., noise
- Compare different HV distribution schemes
 - Mostly fits expectations

- Exchanged RD53A quad modules with digital ITkPixV1.1 quad modules
- Intention to support the ITk Pixel LV PSU specifications review
 - Including current ramp rate, noise levels and fast load changes
- First measurements focusing on start-up of ITkPix modules
 - Using a current source prototype with adjustable ramp rate (1-10000 A/s)
 - Connection using a 60m long Type-3 VDDA cable

- ITkPix SLDO generally much more reliable than RD53A SLDO
- Observed issues at slow ramp speeds @ 25°C
 - Unirradiated modules
 - Unrealisticly low ramp speeds < 10 A/s
 - Behaviour compatible with SLDO bandgap not starting properly
- At -40°C significant start-up issues also for high ramp rates
 - O(1000A/s), short chain lengths

- Cause for issues @ fast ramps suspected in current source
 - Small leakage current (uA) on output when switched off
- Causes residual voltage on SP chain
- Upon **switching on** LV, **output voltage** is **0V** for a time **Δt**
 - Duration depends on ramp speed
- Reproduced with a Rohde&Schwarz voltage source
 - Configurable offset, followed by Δt@0V

SUMMARY & OUTLOOK

- Integration and characterisation of the Bonn serial powering test setup
 - Setup includes a promising prototype current source
- Characteristics and performance of RD53A modules in serial chain meet expectations
- Transitioned to ITkPixV1.1 digital Quads, first measurements to validate LV PSU specifications
- Encountered **unexpected** startup **issues**, likely caused by PSU
 - More investigations required
 - Without non-zero current before startup, no issues have been observed with the ITkPixV1.1 SLDO
- Possible solutions: Update PSU specs
 - crowbar, limited leakage current, fixed time @ 0V before ramp
- Currently: studying fast load changes in the serial chain

THANK YOU

RD53A PLANAR SERIAL POWERING CHAIN – MODULE PERFORMANCE

- For all modules: tuning of LIN & DIFF to 2ke & 1ke, measure threshold distr., noise
 - LIN FE very noisy
- Fits results from reception tests

RD53A PLANAR SERIAL POWERING CHAIN – MODULE PERFORMANCE

- For all modules: tuning of LIN & DIFF to 2ke & 1ke, measure threshold distr., noise
- Compare different HV distribution schemes
 - Mostly fits expectations

- Cause for startup issues suspected in current source
 - Small leakage current (uA) on output when switched off
- Causes residual voltage on SP chain O(<500mV)
 - Per-module voltage drop decreases with chain length

