

Carlo A. Gottardo on behalf of the ATLAS TDAQ Collaboration

FELIX the new ATLAS readout system from Run 3 to High Luminosity LHC ICHEP 2022 - 09/07/2022

ATLAS trigger and data acquisition system (DAQ)

- the Large Hadron Collider collides protons at a 40 MHz rate
- the maximum event rate for physics to permanent storage is 3 kHz
- two-level trigger to select events

Accept signal max latency 2.5 µs max rate 100 kHz High-Level Trigger Permanent (HLT) Storage 100 kHz 3 kHz

Run 2 architecture remains in place for most sub-detectors

FELIX readout system | Carlo A. Gottardo | ICHEP 2022 | 2022-07-09

sub-detector specific ROD boards running data processing

- ROS: set of custom readout cards hosted by commodity computers
- data buffering during HLT event processing

ROS readout card (RobinNP) [arXiv 1710.05607]

Run 3 DAQ architecture

New FELIX-based DAQ architecture

FELIX

- PCIe cards hosted by commodity computers
- only custom component in new architecture
- data routing, no processing

SW ROD

- software in charge of data processing and aggregation, monitoring
- hosted by commodity computers

The FLX-712 FELIX card

- •FPGA Xilinx Kintex UltraScale XCKU115, 16-lane PCIe Gen3
- •interface to Timing, Trigger and Control (TTC) systems
- •flash memory to store firmware

FELIX readout system | Carlo A. Gottardo | ICHEP 2022 | 2022-07-09

•8 MiniPODs to support up to 48 bidirectional optical links (4 MiniPODs/24 links in most common version)

•Around 300 boards produced, distributed in ATLAS, ProtoDUNE-SP, NA62, LUXE and others

			•
Firmware	EC link	\checkmark	
	IC link	\checkmark	
	E-group 0	\checkmark	

Two main flavours: E-group 1

- •FULL: 24 links per Earely 9.6 Gb/s each in the to-host direction
- E-group 3 • GBT: to interface to GBT
 - -GBTX is a radiation-hard ASIC developed at CERN [1]
 - -used as on-detector data stream aggregator
 - -GBT firmware supports 24 4.8 Gb/s bi-directional GBT links
 - -Each GBT link carries multiple data streams (*e-links*) of configurable bandwidth

ATLAS benchmarks

Mode	Message size	Rate per link	(e)links per card	Total message rate per card	Total data rate per card	Use case
FULL	4800 bytes	100 kHz	12	1.2 MHz	46 Gbps	LAr calo, LAr calo trigger
GBT	40 bytes	100 kHz	192	19.2 MHz	7.5 Gbps	New Small Wheels
					[1] d	loi: 10.5170/CERN-2009-0

Software

Readout application

- interrupt-driven event-loop architecture
- asynchronous non-blocking operations
- custom network library built on top of libfabric [1]
- remote direct memory access (RDMA) technology for low overhead transfers

[1] https://ofiwg.github.io/libfabric/

Nvidia/Mellanox ConnectX-5 [image by storagereview.com]

Network events:

- 1. Send completed
- 2. Data received
- 3. Buffer available for sending

System events:

- 1. Timer events (timerfd)
- 2. Signals (eventfd)
- 3. Any file descriptor event

Software

Readout application

- server publishes links/e-links, clients subscribe
- two data transfer approaches: zero-copy, data coalescence

•user-friendly API hides the complexity of network library for client applications

API functions

subscribe(elink_number) unsubscribe(elink_number) send_data(elink_number)

API callback hooks

on_message_received(elink_number) on_connection_established(elink_number) on_disconnection(elink_number)

FELIX in ATLAS Installation and function

- •64 FELIX PCs, 105 FLX-712 cards installed in ATLAS counting room
- FELIX used for readout, control/monitoring and clock & trigger routing for

New Small Wheels

LAr digital readout and Calo trigger

[CDS records 2777152, 2778165, 2789104]

More in <u>H. Cai</u>, <u>N. Themistokleous</u>, <u>C. Tosciri</u> talks

FELIX readout system

Barrel RPC upgrade

https://cds.cern.ch/record/754973

FELIX in ATLAS Control and monitoring

Application control and monitoring based on Supervisor [1]

- automatic start of all DAQ applications at boot time
- automatic restart in case of crash
- status monitoring & control via web interface

Monitoring integrated in ATLAS infrastructure

- operational monitoring [2] with Grafana [3] dashboard
- log messages in Error Reporting System [4]
- conditions of PC, FLX-712 and network recorded by computer cluster monitoring

[1] <u>http://supervisord.org/</u> [2] doi: <u>10.1051/epjconf/202024501020</u> [3] <u>https://go2.grafana.com</u> [4] doi: 10.1088/1742-6596/608/1/012004

FELIX in ATLAS

2022-05-28 11:02:50 CEST

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun3Collisions

FELIX for High-Luminosity LHC

ATLAS DAQ in Run 4

Run 4 conditions

- •1 MHz L1 trigger rate (×10 Run 3)
- •up to 200 interactions per bunch-crossing (×3 Run 3)
- •5.2 TB/s data throughput (×20-30 Run 3)

FELIX requirements

- readout of all sub-detectors
- •~14000 optical links with bandwidth [2.5, 25] Gb/s
- support for new detector-specific functionalities
 - e.g. continuous "trickle" reconfiguration of new tracker front-end electronics (pixel, strips)

FELIX hardware upgrade

A new FELIX card is necessary to support

- •increased maximum link bandwidth (10 \rightarrow 25 Gbps)
- new timing/trigger interface

Prototypes

- •FLX-128 and FLX-181 prototypes built in 2019 and 2021
- new FPGAs, fourth/fifth generation PCIe, new optical transceivers (FireFly™)

FLX-181

Xilinx VM1802 FPGA up to 24 links 25 Gb/s

FELIX firmware upgrade

New firmware to support

- additional data encodings (adopted by detectors and TTC system)
- higher speed links and PCIe interface
- larger number of buffers in computer memory

data of first set of data of second set 12 (or 24) links of 12 (or 24) links

New flavours in addition to GBT and FULL:

<u>LPGBT</u> (evolution of GBTX), PIXEL & STRIP (custom LPGBT), <u>Interlaken</u> (64b/67b encoding) Run 4 firmware regularly built and available for different FLX models

8 buffers. Configurable elink destination.

FELIX software upgrade

Same software architecture as in Run 3 but different deployment scheme

Run 3: only two readout applications per card

Run 4: up to eight readout applications. Different data types can de decoupled.

CPU Intel Xeon E5-1660 v4 8 cores, 3.2 / 3.8 GHz

FELIX performance from Run 3 to Run 4

In the Run 3 benchmark scenarios FELIX can handle

- up to 150 kHz trigger rate with data coalescence (96 e-links per DMA buffer, 40 byte messages)
- up to 120 kHz in zero-copy mode (6+6 links, 4.8 kB messages)

Theoretically with ×4 buffers 150 kHz \rightarrow 600 kHz trigger rate $120 \text{ kHz} \rightarrow 480 \text{ kHz}$ trigger rate

Device 1

Device 2 Device 3

Device 0

1 MHz already reachable e.g. 24 FULL links with 192 byte messages

Ongoing tests to identify bottlenecks with newer PCs exceed predictions.

Bottleneck identification

Insight on network library

- also used in SW ROD performance test with simulated FELIX input
- test on Run 3 SW ROD PC equipped with two 100 Gb/s network interfaces
- Run 3 SW ROD can handle Phase-II data aggregation rates using 12 CPU cores

FELIX readout system | Carlo A. Gottardo | ICHEP 2022 | 2022-07-09

Overview of upgrades in <u>O. Jinnouchi's talk</u> on Friday

ITk pixel in on Thursday

Integration with new systems ITk strips

OCE Catrips Stave at CERN

ning Detector Strips Encode ands 03 nmands ues figura kle lir ted in

- FELIX STRIPS firmware functional
- configuration and readout via FELIX
- cross-check with small scale alternative readout hardware

integration ongoing at CERN
tests with lpGBT firmware
more on Z. Liang's talk on Thursday

m | Carlo A. Gottardo | ICHEP 2022 | 2022-07-09

Summary

Run 3

Run 4 and beyond

ATLAS RUN 3 LARGE HADRON COLLIDER est. 2022 at 13.6 TeV

• FELIX integrated in the ATLAS DAQ infrastructure • data-taking started, gaining experience in final operational environment and conditions

new hardware prototypes under development

• firmware that allows for a scalable software approach

tests planned with most recent CPUs and network interfaces

