Upstream Tracker: the new silicon microstrip detector for the LHCb Upgrade

Svende Braun on behalf of the LHCb collaboration University of Maryland

8th July 2022

41st International Conference on High Energy Physics (ICHEP), Bologna

Focus on flavor physics

- \Rightarrow 25% of $b\bar{b}$ production covered within 4% of solid angle. $2 \le \eta \le 5$
- 100k b-hadrons produced every second

Focus on flavor physics

- \Rightarrow 25% of $b\bar{b}$ production covered within 4% of solid angle. $2 \le \eta \le 5$
- 100k b-hadrons produced every second
- Excellent secondary vertex reconstruction
 - ➡ Large boost

Focus on flavor physics

- \Rightarrow 25% of $b\bar{b}$ production covered within 4% of solid angle. $2 \le \eta \le 5$
- 100k b-hadrons produced every second
- Excellent secondary vertex reconstruction
 - ➡ Large boost

Svende Braun

Focus on flavor physics

- \Rightarrow 25% of $b\bar{b}$ production covered within 4% of solid angle. $2 \le \eta \le 5$
- 100k b-hadrons produced every second
- Excellent secondary vertex reconstruction
 - Large boost

- 4×10³² cm⁻²s⁻¹
 - high occupancy

Svende Braun

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Tracking upgrade

- - Provides first momenta estimate: very low pT tracks can be removed
 - ➡ Better p_T resolution
 - Important reduction of 'ghost' rate from mismatched hits
- Significant speed up in reconstruction time
 - Make possible the software-only trigger

Svende Braun

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

~ Not only able to withstand 50 fb⁻¹ + 40 MHz readout, but improved performance

I	1	
	1	_
		_
		_
		_
		_
	_	
e		_
-		
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
1 .		_
191101	n	_
iauvi		
	1	
	I	
	10)
	I U	
		7
7	¥Ρ'	V

Upstream Tracker (UT)

UT Overview

- Placed between VELO and dipole magnet
 - Long-lived particle reconstruction (K_s^0, Λ^0) decaying after VELO
 - Important for upgrade triggering scheme:
 - better momentum resolution
 - Reduces 'ghost' tracks from mismatched hits

UT Overview

- Placed between VELO and dipole magnet
 - Long-lived particle reconstruction (K_s^0, Λ^0) decaying after VELO
 - Important for upgrade triggering scheme:
 - better momentum resolution
 - Reduces 'ghost' tracks from mismatched hits

~ 4 layers of silicon micro-strip detectors

→ Arranged as vertical/stereo layers (±5°) to provide x-y position of particle

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

UT Overview

- Placed between VELO and dipole magnet
 - Long-lived particle reconstruction (K_s^0, Λ^0) decaying after **VELO**
 - Important for upgrade triggering scheme:
 - better momentum resolution
 - Reduces 'ghost' tracks from mismatched hits

~ 4 layers of silicon micro-strip detectors

→ Arranged as vertical/stereo layers (±5°) to provide x-y position of particle

Improved performance

- → 40 MHz readout
- **Finer granularity**: close to beam $187.5\mu m$ pitch -> $93.5\mu m$
- Larger coverage: closer to beampipe
- Reduced material budget

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Silicon sensor

Sensor	Туре	Pitch	Length	Strips
А	p-in-n	187.5 µm	99.5 mm	512

Svende Braun

sensors 888

∼ Top-side HV biasing

- \sim Optimization with 4 designs
 - → Outer region with p-in-n, 187.5 µm pitch

Embedded pitch adapters

Silicon sensor

Sensor	Туре	Pitch		Length	Strips
А	p-in-n	187.5	μm	99.5 mm	512
В	n-in-p	93.5	μm	99.5 mm	1024
С	n-in-p	93.5	μm	50 mm	1024
D	n-in-p	93.5	μm	50 mm	1024

4-ASIC module

Svende Braun

sensors 888 48 16 16 512 strips Туре А 1024 strips Туре В

Embedded pitch adapters

→ Inner region with n-in-p, 93.5 µm pitch

Top-side HV biasing

Cost effective

00 00

Optimization with 4 designs

→ Outer region with p-in-n, 187.5 µm pitch

60.68 micron

0 0 0 0 0 0

Radiation-hard and good granularity -> 8-ASIC module

1024 strips Type C 1024 strips Type D

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Silicon sensor

Sensor	Туре	Pitch		Length	Strips
А	p-in-n	187.5	μm	99.5 mm	512
В	n-in-p	93.5	μm	99.5 mm	1024
С	n-in-p	93.5	μm	50 mm	1024
D	n-in-p	93.5	μm	50 mm	1024

4-ASIC module

Svende Braun

sensors 888 48 16 16 512 strips Туре А 1024 strips Туре В 1024 strips Type C 1024 strips Type D

Top-side HV biasing

- Optimization with 4 designs
 - → Outer region with p-in-n, 187.5 µm pitch

Embedded pitch adapters

- → Inner region with n-in-p, 93.5 µm pitch
 - Radiation-hard and good granularity -> 8-ASIC module

Circular cutout near the beamline

- \sim Extracts, shapes & digitizes analogue signals from sensors
- ~ Performs Digital Signal Processing
 - Pedestal and common mode noise subtraction
 - ➡ Zero-suppression
 - Data formatting & recorded in local on-chip memory
- Transmits serially output data
 - → Up to 5 SLVS e-links @ 320 Mbps
 - → Allows for **40 MHz readout of UT**

- \sim Extracts, shapes & digitizes analogue signals from sensors
- ~ Performs Digital Signal Processing
 - Pedestal and common mode noise subtraction
 - ➡ Zero-suppression
 - Data formatting & recorded in local on-chip memory
- Transmits serially output data
 - → Up to 5 SLVS e-links @ 320 Mbps
 - → Allows for 40 MHz readout of UT

Svende Braun

~4192 ASICs with **128 channels** each

- → 130 nm-CMOS technology with **30 MRad** radiation tolerance
- → 6-bit ADC/channel

- ~ Extracts, shapes & digitizes analogue signals from sensors
- ~ Performs Digital Signal Processing
 - Pedestal and common mode noise subtraction
 - ➡ Zero-suppression
 - Data formatting & recorded in local on-chip memory
- Transmits serially output data
 - → Up to 5 SLVS e-links @ 320 Mbps
 - → Allows for 40 MHz readout of UT

Svende Braun

~ 4192 ASICs with **128 channels** each

- ➡ 130 nm-CMOS technology with 30 MRad radiation tolerance
- → 6-bit ADC/channel

~ Fast shaping time/return to baseline

- → $T_{peak} \le 25$ ns
- Short tail: < 5% after 2 T_{peak}

- ~ Extracts, shapes & digitizes analogue signals from sensors
- ~ Performs Digital Signal Processing
 - Pedestal and common mode noise subtraction
 - ➡ Zero-suppression
 - Data formatting & recorded in local on-chip memory
- Transmits serially output data
 - → Up to 5 SLVS e-links @ 320 Mbps
 - → Allows for 40 MHz readout of UT

Svende Braun

~ 4192 ASICs with **128 channels** each

- ➡ 130 nm-CMOS technology with 30 MRad radiation tolerance
- → 6-bit ADC/channel

~ Fast shaping time/return to baseline

- → $T_{peak} \le 25$ ns
- Short tail: < 5% after 2 T_{peak}

~ Wire-bonded to sensors

Input pitch 80µm

- ~ Extracts, shapes & digitizes analogue signals from sensors
- ~ Performs Digital Signal Processing
 - Pedestal and common mode noise subtraction
 - ➡ Zero-suppression
 - Data formatting & recorded in local on-chip memory
- Transmits serially output data
 - → Up to 5 SLVS e-links @ 320 Mbps
 - → Allows for 40 MHz readout of UT

Svende Braun

~ 4192 ASICs with **128 channels** each

- ➡ 130 nm-CMOS technology with 30 MRad radiation tolerance
- → 6-bit ADC/channel

~ Fast shaping time/return to baseline

- → $T_{peak} \le 25$ ns
- Short tail: < 5% after 2 T_{peak}

~ Wire-bonded to sensors

- → Input pitch 80µm
- Signal-to-Noise ratio >10

Instrumented stave components

~ASICs mounted on **Hybrids**

→ 2 variants: 4-ASIC for A sensor (outer region) and 8-ASIC hybrid for B,C,D sensors in inner region

Instrumented stave components

~ ASICs mounted on **Hybrids**

→ 2 variants: 4-ASIC for A sensor (outer region) and 8-ASIC hybrid for B,C,D sensors in inner region

~ Flex cables connect hybrids to readout

- → Low mass flex circuit
- provide power to chips and transmit signals to readout electronics

~ ASICs mounted on **Hybrids**

→ 2 variants: 4-ASIC for A sensor (outer region) and 8-ASIC hybrid for B,C,D sensors in inner region

~ Flex cables connect hybrids to readout

- → Low mass flex circuit
- provide power to chips and transmit signals to readout electronics

Modules (hybrids & sensors) and flex Stave

- Low-mass support structure with dimensions 1.6
- Sensors overlap on front & back
- Integrated titanium pipe for CO₂ cooling
 - ★ Keep sensors < -5°C</p>

Instrumented stave components

~ASICs mounted on **Hybrids**

→ 2 variants: 4-ASIC for A sensor (outer region) and 8-ASIC hybrid for B,C,D sensors in inner region

~ Flex cables connect hybrids to readout

- → Low mass flex circuit
- provide power to chips and transmit signals to readout electronics

Modules (hybrids & sensors) and flex Stave

- Low-mass support structure with dimensions 1.6
- Sensors overlap on front & back
- Integrated titanium pipe for CO₂ cooling • Keep sensors $< -5^{\circ}C$
- → 68 staves in total
 - ◆ 16/18 staves per plane

Instrumented stave components

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Peripheral Electronics (PEPI)

~ A flexible pigtail cable connects the stave to PEPI

Svende Braun

Peripheral Electronics (PEPI)

~ A flexible pigtail cable connects the stave to PEPI

~ Backplane distributes balanced load to Data Control Boards (DCBs) & routes power

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Peripheral Electronics (PEPI)

~ A flexible pigtail cable connects the stave to PEPI

~ Backplane distributes balanced load to Data Control Boards (DCBs) & routes power

~ DCBs optically send data to LHCb DAQ via fibers

- → Bandwidth: 248 DCBs × 3 VTTx/DCB × 2 links/VTTx × 4.8 Gb/s = 7.1 Tb/s
- → Also control system via VTRx

Each **DCB** (Data Control Board) has **3 VTTx** (rad-hard optical transmitter),

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Svende Braun

7 GBTx (rad-hard serializerdeserializer ASIC), and **1 VTRx** (optical TX/RX)

THEP

UT integration

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Slide 11

THEP

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Slide 11

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Slide 11

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Underground activities

- ~ Preparation of services in cavern before closure in beginning of April
 - → Official start of Run 3
- ~ High Voltage test with full chain completed
- ~ Cable chain preparation ongoing

Underground activities

- ~ Preparation of services in cavern before closure in beginning of April
 - → Official start of Run 3
- ~ High Voltage test with full chain completed
- ~ Cable chain preparation ongoing

~ Low voltage:

- → Installation & commissioning of primary power and 220 LVRs -> remote control with fibers
- Fiber routing

Underground activities

- ~ Preparation of services in cavern before closure in beginning of April
 - → Official start of Run 3
- ~ High Voltage test with full chain completed
- ~ Cable chain preparation ongoing

Svende Braun

~ Low voltage:

- → Installation & commissioning of primary power and 220 LVRs -> remote control with fibers
- Fiber routing

Installation challenges

Faced many challenges along the way:

Installation challenges

Faced many challenges along the way: ➡ Pigtail installation

Installation challenges

Faced many challenges along the way: → Pigtail installation

Faced many challenges along the way:

- ➡ Pigtail installation
- → PEPI cabling & commissioning

Installation challenges

Faced many challenges along the way:

- Pigtail installation
- → PEPI cabling & commissioning

Installation challenges

All C-side PEPI volumes fully installed & tested

- → DCBs, fibers, validated using bit error rate test
- ∼ Work ongoing in parallel on A- & C-side

Faced many challenges along the way:

- Pigtail installation
- → PEPI cabling & commissioning
- → Stave installation

Installation challenges

All C-side PEPI volumes fully installed & tested

- → DCBs, fibers, validated using bit error rate test
- Work ongoing in parallel on A- & C-side

Svende Braun

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Stave installation

Svende Braun

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Stave installation

1st stave installed, March 7th

Svende Braun

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Stave installation

1st stave installed, March 7th

2nd stave installed, June 16th

Svende Braun

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Stave installation

1st stave installed, March 7th

2nd stave installed, June 16th

Svende Braun

Stave installation

2nd stave installed, June 16th

- ~ LHCb undergoing a **significant upgrade** to increase data taking rate 5×
 - ➡ Remove hardware trigger → All hits are read out
 - Increase detector longevity
 - Improve performance

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

- ~ LHCb undergoing a **significant upgrade** to increase data taking rate 5×
 - \rightarrow Remove hardware trigger \rightarrow All hits are read out
 - Increase detector longevity
 - Improve performance
- Upstream Tracker is a key component of the upgrade trigger strategy

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

- ~ LHCb undergoing a **significant upgrade** to increase data taking rate 5×
 - \rightarrow Remove hardware trigger \rightarrow All hits are read out
 - Increase detector longevity
 - Improve performance
- Upstream Tracker is a key component of the upgrade trigger strategy
- Upstream Tracker is currently being installed
 - → All major components are available
 - Final stage of installation and commissioning
 - Integration into LHCb expected by end of the year

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

Thank you for your attention!

Any questions?

∼ Work ongoing in parallel on A- & C-side

- ~ All major components there
 - → All **electronics** produced
 - → Stave production completed for C-side
 - ★ A-side: A-type staves need 16 Modules repaired

~ Final stage of installation and commissioning @CERN

-> putting all components together now

\sim C-side:

Stave installation will be completed by beginning of September

→ Plan to move into cavern in September technical stop (~1 week) including mechanical installation outside of LHCb acceptance

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

\sim C-side:

- Stave installation will be completed by beginning of September
- → Plan to move into cavern in September technical stop (~1 week) including mechanical installation outside of LHCb acceptance

\sim A-side:

- → Parallel installation started:
 - Backplane installation done
 - Next steps: Pigtail installation, PEPI cabling
- → Stave installation will start in October

\sim C-side:

- Stave installation will be completed by beginning of September
- Plan to move into cavern in September technical stop (~1 week) including mechanical installation outside of LHCb acceptance

\sim A-side:

- → Parallel installation started:
 - Backplane installation done
 - Next steps: Pigtail installation, PEPI cabling
- Stave installation will start in October

∼ Use 2022/23 YETS for UT installation in cavern

\sim C-side:

- Stave installation will be completed by beginning of September
- Plan to move into cavern in September technical stop (~1 week) including mechanical installation outside of LHCb acceptance

\sim A-side:

- → Parallel installation started:
 - Backplane installation done
 - Next steps: Pigtail installation, PEPI cabling
- Stave installation will start in October

∼ Use 2022/23 YETS for UT installation in cavern

Tracking studies without UT ongoing

Lower HLT1 throughput won't be issue this year -> lower luminosity

\sim C-side:

- Stave installation will be completed by beginning of September
- Plan to move into cavern in September technical stop (~1 week) including mechanical installation outside of LHCb acceptance

\sim A-side:

- → Parallel installation started:
 - Backplane installation done
 - Next steps: Pigtail installation, PEPI cabling
- Stave installation will start in October

∼ Use 2022/23 YETS for UT installation in cavern

Tracking studies without UT ongoing

- Lower HLT1 throughput won't be issue this year -> lower luminosity
- → HLT1 reconstruction studies show (LHCb-FIGURE-2022-007, LHCb-FIGURE-2022-010)

\sim C-side:

- Stave installation will be completed by beginning of September
- → Plan to move into cavern in September technical stop (~1 week) including mechanical installation outside of LHCb acceptance

\sim A-side:

- → Parallel installation started:
 - Backplane installation done
 - Next steps: Pigtail installation, PEPI cabling
- → Stave installation will start in October

∼ Use 2022/23 YETS for UT installation in cavern

Tracking studies without UT ongoing

- → Lower HLT1 throughput won't be issue this year -> lower $\frac{5}{2}$ $\frac{1}{0.8}$ luminosity
- → HLT1 reconstruction studies show (LHCb-FIGURE-2022-007, LHCb-FIGURE-2022-010)
 - Small impact on tracking efficiency

\sim C-side:

- Stave installation will be completed by beginning of September
- Plan to move into cavern in September technical stop (~1 week) including mechanical installation outside of LHCb acceptance

\sim A-side:

- → Parallel installation started:
 - Backplane installation done
 - Next steps: Pigtail installation, PEPI cabling
- Stave installation will start in October

∼ Use 2022/23 YETS for UT installation in cavern

Tracking studies without UT ongoing

- $\Rightarrow Lower HLT1 throughput won't be issue this year -> lower <math>\frac{1}{2}_{0.8}$ luminosity
- → HLT1 reconstruction studies show (LHCb-FIGURE-2022-007, LHCb-FIGURE-2022-010)
 - Small impact on tracking efficiency
 - Higher ghost rate

Svende Braun

2022

2023

Stave test results

- ~ Stave UTbV-9C tested at nominal conditions → CO₂ T=-20°C, Si bias voltage V=200V
- ~ All 14 modules tested successfully -> no issues identified
- ~ Results are in agreement with expectations & laboratory measurements
- Cooling system is working successfully

Stave test results

- identified
- laboratory measurements

Need for an upgrade

Have been luminosity leveling at 4×10³² **cm⁻²s⁻¹** since 2011 Data sample limited to

~ Limitations for higher luminosity of 2011-2018 detector

- Overall performance degrades quickly for high occupancy
- Low efficiency for hadronic decays at higher lumi due to hardware trigger
 - High E_T signatures based on CALO and MUON
- → Radiation hardness of trackers

~ Upgrade I being installed will remove these constraints

Need for an upgrade

Have been luminosity leveling at 4×10³² **cm⁻²s⁻¹** since 2011 Data sample limited to

Luminosity (1/fb) 2017 (6.5+2.51 TeV): 1.71 /fb + 0.10 /fb 2016 (6.5 TeV): 1.67 /fb 2015 (6.5 TeV): 0.33 /fb 2012 (4.0 TeV): 2.08 /fb 2011 (3.5 TeV): 1.11 /fb 2010 (3.5 TeV): 0.04 /fb Recorded Integrated 0.6 0.4 Nov Mav Jul Sep Mar

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

LHCb Run Land Run L

~ Run I: 2010-2012 data ~ Run 2: 2015-2018 data

Svende Braun

Broad physics program with in total $9fb^{-1}$ of data!

SALT

Sensor+ASIC characterization

- **Beam test** at Fermilab (March 2019)
- Type A unirradiated sensor
 - → 99.5% efficiency and SN ~ 12
- Type B sensor irradiated to 2x maximum dose
 - → 94% efficiency and SN ~ 11
 - Partly due to readout limitation, most efficiency will be recovered with LHCb readout

Svende Braun

Final system expected to have single-hit high efficiency (> 99%) and good signal-to-noise ratio throughout experiment lifetime

> M. Artuso et al, "First Beam Test of UT Sensors with the SALT 3.0 Readout ASIC" (2019) DOI:10.2172/1568842

0

100

S/N ~ 11 94% efficienc	120 110 100 90 2 70 80 70
	60 60 50 50
←Efficiency ←Signal (Landau MPV)	30 20
Irradiated sensor (2x nomina 100 200 300 400 500 Bias Voltage (V)	I) 600

Hybrid and flex cables

Svende Braun

Upstream Tracker: the new silicon microstrip tracker for the LHCb Upgrade

ASICs mounted on hybrid flex boards

~ Hybrids then readout by **flex cables**

- ⇒ 3 lengths
- → 100 Ω differential input impedance traces
- → HV traces: able to withstand **up to 1000V** between adjacent lines
- → Less than 500 mV roundtrip voltage drops on power traces

- ~ Stave is readout by **Peripheral Electronics** (PEPI)
- to the whole system:

Readout and Power Electronics

Software-only trigger

Svende Braun

LHCb upgrade trigger

30 MHz collision rate

HLT

HLT1: full event reconstruction, inclusive and exclusive kinematic/ geometric selections

Buffer events to disk, online calibration/alignment

HLT2: offline precision PID and track quality. Output full event information for inclusive triggers, trigger candidates, and related **PVs for exclusive triggers**

100 kHz (2-5 GB/s) to storage

∼ Full event reconstruction (HLT1) at **30 MHz** is a **major** challenge

VELO+UT+forward tracking take the bulk of time

