

LHCb HLT1: Tracking and vertexing at 30MHz with GPUs

Christina Agapopoulou on behalf of the LHCb collaboration

ICHEP 2022 - 09/07/2022

European Research Council Established by the European Commission

The LHCb data-flow

Checkout overview from Daniel!

- Detector data received by O(500) FPGAs and built into events in the event building (EB) farm servers
- 2-stage software trigger, HLT1 & HLT2
- Real-time alignment & calibration
- After HLT2, 10 GB/s of data for offline processing

The LHCb first level trigger

• The goal of HLT1:

- Be able to intake the entirety of the LHCb raw data (5 TB/s) at 30 MHz
- Perform partial event reconstruction & coarse selection of broad LHCb physics cases
- Reduce the input rate by a factor of 30 (~ 1 MHz)
- Store selected events in intermediate buffer for real-time alignment and calibration

First complete high-throughput GPU trigger for a HEP experiment!

C. Agapopoulou

ICHEP 2022

Are GPUs a good fit?

Event builder farm equipped with 173
 servers

Are GPUs a good fit?

- Event builder farm equipped with 173
 servers
- Each server has 3 free PCIe slots
 - Can be used to host GPUs
 - Sufficient cooling & power
 - Advantageous to have GPUs as selfcontained processors
 - Sending data to GPU is like sending data to network card

Are GPUs a good fit?

- Event builder farm equipped with 173
 servers
- Each server has 3 free PCIe slots
 - Can be used to host GPUs
 - Sufficient cooling & power
 - Advantageous to have GPUs as selfcontained processors
 - Sending data to GPU is like sending data to network card
- GPUs map well into LHCb DAQ architecture
- HLT1 tasks inherently parallelizable
- Smaller network between EB & CPU HLT
- Cheaper & more scalable than CPU alternative
- Was chosen as the baseline for the upgrade!

Is implemented with O(200) Nvidia RTX A5000 GPUs

GPU-equipped event builder PC, with traffic of all three readout cards.

Throughput

- 30 MHz goal can be achieved with O(200) GPUs (maximum the Event Builder server can host is 500)
- Throughput scales well with theoretical TFLOPS of GPU card
- Additional functionalities are being explored

LHCb-FIGURE-2020-014

ICHEP 2022

HLT1 sequence

Reconstruction

Public software project: gitlab repo

Track reconstruction with GPUs

 Parallelized tracklet finding inside search windows requiring at least 3 hits

SciFi tracking: Comput Softw Big Sci 4, 7 (2020)

- 3 stations with 4 layers of Scintillating Fibres
- Velo-UT tracks extrapolated using parametrization
- Parallelized *Forward algorithm* to reconstruct **long** tracks:
 - Search windows from Velo-UT momentum estimate
 - Form triplets and extend to remaining layers

HLT1 tracking performance

Run 2 performance maintained at x5 instantaneous luminosity

• Excellent track reconstruction efficiency (> 99% for VELO, 95% for high-p forward tracks)

Good momentum resolution and fake rejection

10

Tracking without the UT

- In 2022, the UT detector will unfortunately not be available for data-taking
- Tracking performance and throughput maintained, at the cost of larger fake rate
- Opportunity to commission 2 options, which **both maintain the current throughput:**
 - Forward without UT -> check out Daniel's talk
 - Seeding+Matching:
 - Standalone SciFi reconstruction & matching to VELO seeds
 - Highly efficient for low momenta
 - Opens the door to additional physics cases in HLT1 (downstream and SciFi tracks)

Tracking without the UT

- In 2022, the UT detector will unfortunately not be available for data-taking
- Tracking performance and throughput maintained, at the cost of larger fake rate
- Opportunity to commission 2 options, which **both maintain the current throughput:**
 - Forward without UT -> check out Daniel's talk
 - Seeding+Matching:

C. Agapopoulou

ICHEP 2022

12

Vertex reconstruction

- Primary vertices found from **clusters** in the closest approach of tracks to the beamline
- 1-1 mapping between tracks and vertices requires serialization
 - Instead, every track assigned to every vertex based on weight
- Efficiency > 90% for vertices with N. tracks > 10

HLT1 selection performance

- Inclusive rate for the main HLT1 lines ~ 1 MHz
- O(30) lines implemented so far:
 - Cover majority of LHCb physics program (B, D decays, semileptonic, EW physics)
 - Special lines for monitoring, alignment and calibration
 - Additional trigger lines under development
- Compatible performance between CPU and GPU

Comput. Softw. Big Sci. 6 (2022) no.1, 1 14

HLT1 commissioning

- LHCb has been exercising its DAQ in parallel to the LHC commissioning
- Sub-set of detectors (Calorimeters, Muon stations, PLUME) already in the global partition of the Experiment Control System (ECS)
- System running 24/7 in parallel to subdetector commissioning activities

HLT1 commissioning

HLT1 commissioning

- ~200 GPUs are installed in the EB
- HLT1 is already included in the global partition
- Triggering on calorimeter clusters @ 20 MHz!
- Next steps:
 - Test full trigger sequence when trackers are ready
- Monitoring in progress

Conclusions

- LHCb is currently undergoing its first major upgrade in order to increase its instantaneous luminosity by x5
- Major changes on the trigger strategy:
 - Remove L0 hardware trigger, read-out full detector at 30 MHz
 - New, software-only first level trigger based on GPUs
- Partial event reconstruction and trigger selection lines implemented, excellent physics performance
- Throughput ~170 kHz \rightarrow system can be realised with around 200 GPUs
- GPUs are installed in the EB server and commissioning ongoing with first collisions!

Stay tuned for more updates!

ICHEP 2022

Thank you for your attention!

LHCb Control Room Launch of the LHC Run 3

Backup

The LHCb U1 upgrade

The LHCb detector at CERN:

- Single-arm forward spectrometer for highprecision flavour physics
- High precision tracking and vertexing
- Complemented with excellent PID

The U1 upgrade

- Instantaneous luminosity will increase by x5
- Major upgrade in all sub-detectors to handle increased rates
- Software-only trigger!

LHCb data-flow in Run 3

- Detector data received by O(500) FPGAs and built into events in the event building (EB) farm servers
- 2-stage software trigger:
 - HLT1: partial event reconstruction and coarse selection, reduces rate to ~ 1 MHz
 - HLT2: full event reconstruction and O(1000) selection lines
 - Buffering between HLT1 & HLT2 \rightarrow real-time alignment & calibration
- After HLT2, 10 GB/s of data for offline processing

C. Agapopoulou

ICHEP 2022

Architecture upgrade options

Detector data received by O(500) FPGAs and built into events in the EB servers

Two options:

 Send full 40 Tb/s to a CPU processing server → extra network needed

 Fill extra EB slots with GPUs → reduce rate locally to 1 Tb/s before full processing

Allen: a GPU HLT1 trigger platform

- Public software project: gitlab repo
- Supports three modes:
 - Standalone
 - Compiling within the LHCb framework for data ulletacquisition
 - Compiling within the LHCb framework for ● simulation and offline studies
- Runs on CPU, Nvidia GPU (CUDA, CUDACLANG), AMD GPUs (HIP)
- GPU code written in CUDA
- Cross-architecture compatibility (HIP, CPU) via macros

Allen

Welcome to Allen, a project providing a full HLT1 realization on GPU.

Documentation can be found here.

Mattermost discussion channels

- Allen developers Channel for any Allen algorithm development discussion.
- Allen core Discussion of Allen core features.
- AllenPR throughput Throughput reports from nightlies and MRs.

Performance monitoring

- Allen throughput evolution over time in grafana
- Allen dashboard with physics performance over time

Documentation Edit on GitLab Welcome to Allen's documentation! Allen is the LHCb high-level trigger 1 (HLT1) application on graphics processing units (GPUs). It is responsible for filtering an input rate of 30 million collisions per second down to an output rate of around 1-2 MHz. It does this by performing fast track reconstruction and selecting pp collision events based on one- and two-track objects entirely on GPUs. This site documents various aspects of Allen. **ICHEP 2022**

HLT1 CPU/GPU tracking performance

HLT1 muonID performance

Excellent muon identification and misID background rejection

26

HLT1 tracking performance

ICHEP 2022

<u>Comput. Softw. Big Sci. 6 (2022) no.1, 1</u>

C. Agapopoulou

Kalman filter

- Improve Impact Parameter (IP) resolution and reduce ghosts
- Nominal LHCb Kalman filter uses Runge Kutta extrapolator + detailed detector description
- In HLT1, for performance reason two alternatives based on parametrizations:
 - Full detector Parametrized Kalman Filter
 - Velo-Only Kalman Filter (fits only Velo segment, momentum estimate from full track)
 - IP resolution mostly impacted by Velo measurement -> Velo-Only option chosen, which significantly improves throughput

The track matching algorithm

- Two main inputs: **SciFi** and **VELO** seeds
- Algorithm approach:
 - "Kink" approximation: Velo/SciFi seeds extrapolated to matching position as straight lines
 - Magnetic field and bending in y parametrised with truth simulation to calculate z_match(x,y)

Towards the integration of Allen in the

online system

Challenge of fully commissioning Allen: we need the real detectors and EB server first!

First integration tests in smaller-size servers with pre-loaded simulation data

- Emulate network traffic and memory pressure with mock-up data from FPGAs
- Stable throughput at 70 kHz
- I/O memory bandwidth stable and within limits
- Cooling and memory usage requirements met

LHCb-TDR-021

C. Agapopoulou

ICHEP 2022