

Luminosity determination in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

A.Sbrizzi On behalf of the ATLAS collaboration

Introduction

- Often one of the leading sources of uncertainty for cross-section measurements (σ).
- It allows the determination of background levels and sensitivity of searches for new physics.

ATLAS-CONF-2019-021

Preliminary Run-2 uncertainty on \mathcal{L}_{int} is 1.7% for $\sqrt{s} = 13$ TeV.

The Run-2 luminosity analysis in ATLAS is being extensively refined. Some of these refinements will be illustrated in this talk.

Instantaneous luminosity (\mathcal{L}_{inst}) at LHC

$$\mathcal{L}_{inst}(t) = \frac{n_b f_r}{\sigma_{inel}} \ \mu(t)$$

 μ is the average number of inelastic pp collisions per bunch crossing

• Protons collide in bunches (n_b) with a revolution frequency $f_r = 11245.5$ Hz and an inelastic cross-section $\sigma_{inel} \sim 80$ mb @ $\sqrt{s} = 13$ TeV.

Luminosity monitoring

$$\mathcal{L}_{int} = \frac{n_b f_r}{\sigma_{vis}} \int \mu_{vis}(t) \, dt$$

$$\mu_{vis} = \varepsilon \mu$$

 $\sigma_{vis} = \varepsilon \sigma_{inel}$

- Several luminosity monitors with different acceptance (ε) are used in ATLAS to provide complementary measurements of μ_{vis} .
- The luminosity scale (σ_{vis}) is measured in lowluminosity calibration scans ($\mu_{scan} \sim 10^{-4} - 0.5$).

<u>Challenge</u> Extrapolate luminosity from calibration to physics regime with high accuracy (< 1%).

40

30

20

10

 $\boldsymbol{\varepsilon} = \mathbf{8}\%$

1

1.5

2

2.5

3

3.5

4

4.5

 $\boldsymbol{\mu}_{vi^s}$

ATLAS luminosity monitors

Luminosity measurement with LUCID

• μ_{vis} is extracted from the number of hits per bunch crossings (N_{hit}/N_{BC}) recorded in a set of photo-multipliers (N_{PMT}) .

$$\mu_{vis} = -\log\left(1 - \frac{N_{hit}}{N_{BC}N_{PMT}}\right)$$

PMT gain is kept constant with ²⁰⁷Bi calibration sources deposited on the quartz window.

Other Luminosity detectors

- Track-counting algorithms extract μ_{vis} from the number of tracks in the ATLAS Inner Detectors (SCT, pixel, IBL) produced in randomly sampled colliding bunch crossings and that satisfy selection criteria optimized for luminosity measurement.
 - Statistically limited.
- TILE algorithms extract μ_{vis} from the currents drawn by the PMTs
 - D6 for stability in physics runs.
 - E3, E4 gap scintillators for low μ runs.
 - Only bunch integrated signals.
- EMEC and FCal algorithms extract μ_{vis} from the ionization currents produced by particles crossing the LAr-filled gaps between absorbers.
 - Only bunch integrated signals (slow signals).

Track-counting and Calorimeter algorithms are intrinsically linear with μ

ATLAS strategy for luminosity

Multiple complementary algorithms to extrapolate luminosity from the CALIBRATION to the PHYSICS regime.

	Bunches	μ	θ _{beam} [µrad]
Calib.	30 – 140 (isolated)	10⁻⁴ - 0.5	0
Phys.	500 – 2500 (trains)	10 - 60	140 - 160

• CALIBRATION regime (isolated bunches)

- $-\sigma_{vis}$ is measured with LUCID and BCM algorithms bunch by bunch @ μ = 10⁻⁴ 0.5
- Track-counting algorithms are normalized to LUCID algorithm @ $\mu \sim 0.5$.

• CALIBRATION transfer to PHYSICS regime

- Potential non-linear effects in track-counting are constrained using the TILE calorimeter.

• PHYSICS regime (bunch-trains)

- Calorimeter algorithms are normalized to track-counting algorithm in a few physics runs.
- Non-linear effects in LUCID are corrected using track-counting in all physics runs.

Calibration run

- σ_{vis} is extracted from the rate (R) as a function of the distance between the beams ($\Delta x, \Delta y$).
- Bunch intensities (n_1n_2) are measured with LHC beam current transformers.

Calibration transfer to physics regime

- **TILE gap scintillators** are sensitive both in calibration and in physics data-taking conditions.
 - They are used to constraint possible track-counting non-linearities in the physics regime.

Refined analysis Modelling of TILE activation Laser-based correction of PMT gains

Preliminary result (1.3%) improved by at least a factor 2.

Normalization of Calorimeters to track-counting

• Calorimeters are normalized to track-counting around the calibration run.

- They are not sensitive in the calibration regime due to the limited number of colliding bunches.

Refined analysis

For a given data-taking year, the calorimeter/track-counting luminosity ratio with the largest RMS determines the systematic uncertainty associated with the normalization.

Correction of LUCID with track-counting

- The track-counting algorithm is the most stable in time (checked with $Z \rightarrow \mu\mu$ decays).
- Non-linear effects in LUCID are corrected with track-counting (up to 10% @ μ ~50).

$$\langle \mu_{corr} \rangle = p_0 \langle \mu_{uncorr} \rangle + p_1 \langle \mu_{uncorr} \rangle^2$$

- *p*₀ and *p*₁ include the effects of crossing angle and bunch-trains.
 - They are updated up to 3 times in a year.

Comparison between LUCID and Calorimeters

- LUCID measurements are compared to Calorimeter measurements in each run to study long-term stability.
- Track-counting is excluded because it is used to correct LUCID in each run.
- Deviations are mostly within ±1%.

Long-term stability uncertainty

• Physics analyses are based on total integrated luminosity.

Refined analysis

The long-term stability uncertainty is taken as the maximum $\Delta L/L$ in a year.

Preliminary result (0.6%) improved by at least a factor 2 (contribution from normalization included)

Summary

Preliminary Run-2 Total Integrated Luminosity (ATLAS-CONF-2019-021)

 $\mathcal{L}_{int} = 139 \pm 2.4~\text{fb}^{-1}$

Systematic uncertainty (1.7%) is dominated by calibration transfer and then long-term stability.

- Nearly all aspects of the luminosity measurement in ATLAS are being extensively refined since the preliminary Run-2 results.
- The refined Run-2 analysis leads to an improvement by at least a factor two of the dominant systematic uncertainties.
- Hence, the final ATLAS Run-2 combined systematic uncertainty is expected to be significantly improved.

Backup slides

Z-counting efficiencies

- Data-driven tag-and-probe method.
- Each point represents the average over a 20 minutes data-taking period.
- The errors bars show statistical uncertainty only.
- Efficiencies decrease as a function of the pile-up parameter (μ).
- They account for changes of detector and beam conditions during data-taking.
- Residual corrections are estimated from Monte-Carlo simulations.

Z-counting perfomance

- Each point represents a data-taking period of at least 40 minutes.
- The errors bars show statistical uncertainty only.
- The green bands include 68% of the data-points.
- Consistent results between electron and muon channels.
- The spread of the time-dependent ratio to the main ATLAS luminosity algorithm ranges between 0.4% and 0.8% depending on the data-taking year.