New opportunities for understanding high-density QCD matter with CMS Phase II detector at the High Luminosity LHC era

Yousen Zhang (张友森)

for CMS Collaboration

Rice University

ICHEP 2022, July 7, 2022

Confined to deconfined states

A

- QCD, confined hadron and asymptotic freedom
 - Final states confined in colorneutral states – baryon and mesons
 - Coupling strength is running
- Deconfined matters quarkgluon plasma (QGP)
 - Partons deconfined from hadrons with increasing temperature/density

PTEP 2020 (2020) 8, 083C01

Experimental test for QGP

Collective motions

 \checkmark

- Anisotropy
- Long-range correlations

Fast trigger/readout

Wide coverage tracking

QGP tomography through hard probes

ICHEP2022

- Energy loss via gluon emissions
 - Study via jet hadron correlations
 - Modifications of jet shape

4

Hadronizations in QGP

- Thermal partons from QGP and stronger coalescence in QGP
 - baryon enhancements
 - extensively studied from light to heavy quarks

Opportunities at HL-LHC

• Run schedule and luminosity

Collisions	Run2	Run3	Run4
Pb-Pb	2.2/nb	7/nb	7/nb
p-Pb	0.186/pb	0.5/pb	0.5/pb

Opportunities

- Higher luminosity
- Detector upgrade

- Trigger and readout
 - L1 bandwidth: 100 kHz \rightarrow 750 kHz
 - DAQ readout: $6GB/s \rightarrow 51GB/s$
- High granularity calorimeter
 - High granularity endcap
- Tracker

CMS

- Extend $|\eta|$ from 2.4 to 4
- pixel size: $100x150 \text{ um}^2 \rightarrow 50x50 \text{ um}^2$
- MIP timing detector
 - Entirely new, resolution ~35ps
 - Large coverage, |η|<3

Fast trigger/readout	Calorimetry	Tracking	Wide coverage PID
\checkmark			
ICHEP2022			7

- Trigger and readout
 - L1 bandwidth: 100 kHz \rightarrow 750 kHz
 - DAQ readout: $6GB/s \rightarrow 51 GB/s$
- High granularity calorimeter
 - High granularity endcap
- Tracker
 - Extend $|\eta|$ from 2.4 to 4
 - pixel size: $100x150 \text{ um}^2 \rightarrow 50x50 \text{ um}^2$
- MIP timing detector
 - Entirely new, resolution ~35ps
 - Large coverage, |η|<3

Fast trigger/readout	Calorimetry	Tracking	Wide coverage PID
\checkmark	\checkmark		
ICHEP2022			8

- Trigger and readout
 - L1 bandwidth: 100 kHz \rightarrow 750 kHz
 - DAQ readout: $6GB/s \rightarrow 51 GB/s$
- High granularity calorimeter
 - High granularity endcap
- Tracker
 - Extend $|\eta|$ from 2.4 to 4
 - pixel size: $100x150 \text{ um}^2 \rightarrow 50x50 \text{ um}^2$
- MIP timing detector
 - Entirely new, resolution ~35ps
 - Large coverage, |η|<3

Fast trigger/readout	Calorimetry	Tracking	Wide coverage PID
\checkmark	\checkmark	\checkmark	
ICHEP2022			9

- Trigger and readout
 - L1 bandwidth: 100 kHz -> 750 kHz
 - DAQ readout: 6GB/s -> 51 GB/s
- High granularity Calorimeter
 - High granularity endcap
- Tracker
 - Extend $|\eta|$ from 2.4 to 4
 - pixel size: 100x150 um² -> 50x50 um²
- MIP timing detector
 - Entirely new, resolution ~35ps ~
 - Large coverage, |η|<3

Experiment	r	σ_{T}	$r/\sigma_{\rm T}$ (×100)
	(m)	(ps)	$(m \times ps^{-1})$
STAR-TOF	2.2	80	2.75
ALICE-TOF	3.7	56	6.6
CMS-MTD	1.16	30	3.87

Tracking

 \checkmark

ICHEP2022

trigger/readout

Fast

Calorimetry

 \checkmark

Wide coverage

PID

 \checkmark

- Trigger and readout
 - L1 bandwidth: 100 kHz -> 750 kHz
 - DAQ readout: 6GB/s -> 51 GB/s
- High granularity Calorimeter
 - High granularity endcap
- Tracker
 - Extend $|\eta|$ from 2.4 to 4
 - pixel size: 100x150 um² -> 50x50 um²
- MIP timing detector
 - Entirely new, resolution ~35ps ~
 - Large coverage, |η|<3
 - Benefit to PU mitigations, long-lived particles (talk by Livia Soffi, Jul 7, 2022, 12:23 PM), heavy ion physics ...

Barrel timing layer

- Barrel timing layer (BTL), <u>talk by Marta Tornago</u>, Jul 7, 2022, 9:53 AM, Operation
 - Fast rise time
 - Large coverage area
- General
 - LYSO bars + SiPM readout
 - |η|<1.45
 - Inner radius: 1148 mm (40mm thick)
 - Length: +/- 2.6 m along z
 - Surface ~38 m²; 332k channels

16x1 array of crystal bar

Endcap timing layer

- Endcap timing layer (ETL), <u>talk by Maria Addesa</u>, Jul 7, 2022, 10:10 AM, Operation
 - Good radiation tolerance
 - Low occupancy
 - High timing resolution
- General
 - Si with internal gain (LGAD)
 - $1.6 < |\eta| < 3.0$
 - Radius: 315 < R < 1200 mm
 - Position in z: +/-3.0 m (45 mm thick)
 - Surface ~14 m²; ~8.5M channels

LGAD sensors on PCB

MTD Simulations

- Wide coverage up to <u>6 units</u> of rapidity
- π/K separation up to 3 GeV
- K/p separation up to 5 GeV

What we can explore

- Hard probes
 - Jet identified hadron correlations
 - Heavy flavor
 - $D^0 \rightarrow K\pi$
 - $\Lambda_{c}^{+} \rightarrow pK\pi$
 - $B^+ \rightarrow D^0 \pi^+$
 - ..
- Light nuclei
 - d, t, ³He, ⁴He ...
- Observables

...

- Elliptic flow
- Hadron productions
- Jet shapes

arXiv:2112.08156 f = 1.4 f = ALICE f = 0.4 f = 0.4

Hard probes – heavy flavor (HF)

- Dominantly created at initial stage by hard processes – sensitive to early stage
- Sensitive in full p_T range
 - Brownian motions
 - Gluon emissions

MTD benefit HF reconstructions

- $D^0 \rightarrow K\pi$
- ∧_c⁺ → рКл
- $B^+ \rightarrow D^0 \pi^+$

Elliptic flow – 2nd Fourier harmonic

- Precision measurements down to low p_T with MTD
- Number of constituent quark scaling $-v_2(\Lambda_c^+)/v_2(D^0) = 3/2$?
 - Charm similar to strangeness (K_s^{0} and Λ)?

Charm hadronization

- Access full p_T range of Λ_c^+ with MTD
 - Total charm cross section
 - CMS unique access over a rapidity range of <u>up to 6 (4) units in MB (central) events</u>
- Strong constraints on hadronization models

Hard probes – jet

- In- and out-cone hadronizations, fragmentation vs. QGP-related effects
 - Enable measurements of jet *identified* hadrons correlations with CMS
 - Precision access to large jet radius benefits from large MTD coverage

Light nuclei and anti-particles

- Opportunities for studies of light (anti-)nuclei productions
 - ⁴He was first ever observed in heavy ion collisions, Nature 473, 353–356 (2011)
- Abundant nucleons produced in heavy ion collisions – understand the formation of (anti-)nuclei
 - Statistical hadronization Quark systems slowly form light-nuclei as hadron-gas. Formation *before chemical freeze-out,* Nature 561 (2018) 321
 - Coalescence Close nucleons capture each other at kinetic freeze-out, PRC 92 (2015) 064911

Identification of light nuclei

• Time of flight + dE/dx

CMS

Projections for light nuclei

• Elliptic flow and expected yields

CCMS Provings using

Summary

- CMS Phase II good PID by MTD over large rapidity
 - Heavy ions physics, PU mitigations, long-lived particles ...
- Interesting heavy-ion physics during HL-LHC
 - Heavy flavor dynamics and hadronizations
 - Light nuclei formation
 - QGP tomography via jet
 - And more physics findings/observations!

ICHEP2022

0 4/0 0

Backup

Charm hadronization

- Access full p_T range of Λ_c^+ CMS unique access to total charm cross section
- Strong constraints on hadronization models

From large to small collisions

- Unexpected collective motions observed in p-Pb and p-p collisions
- Origin of the collectivity tiny QGP?

CMS

Equation of State via light flavor

- Cumulant for net quantum numbers: C₄ and C₂
 - Quantitatively test lattice QCD: $C_4/C_2 = X_4/X_2$

Diffusivity of QGP

- Conserved quantum numbers (S, B, C) diffuse
 - Large rapidity is essential
 - Measurable via balance function B(Δy) opposite charge pairs minus same charge pairs

$$R_1(\Delta y) = \frac{B_1(\Delta y)}{B(\Delta y)} \equiv \frac{\int d\Delta \phi \ B(\Delta y, \Delta \phi) \cos(\Delta \phi)}{B(\Delta y)}$$

S. Pratt, C. Plumberg: Phys. Rev. C 104, 014906 (2021)

Diffusivity of QGP

- Conserved quantum numbers (S, B, C) diffuse
 - Large rapidity is essential

