

Probing Proton Structure at LHCb

Menglin Xu

On behalf of the LHCb collaboration ICHEP 2022

Proton Structure Study at LHC

- Provide a comprehensive examination of QCD and electroweak physics at a wide range of scales
- Has the potential to provide deep new insights into parton distributions, examining hitherto poorly determined flavours and kinematic regimes

ICHEP 2022

LHCb Detector

[JIST 3 (2008) S08005] [Int. J. Mod. Phys. A 30. 1530022 (2015)]

- Single-arm forward spectrometer
 - \succ Designed for the heavy flavor physics with $2 < \eta < 5$
 - > Coverage is complementary to ATLAS and CMS
 - > Extended to EW measurements: excellent performance of tracking and muon detector

Proton Structure Study at LHCb

- As a result of the forward acceptance, the candidates collected with the LHCb detector are highly boosted, provides access to PDFs
 - High Bjorken-x region, where PDF uncertainties are the largest
 - Low Bjorken-x region, has not been probed directly at electroweak energy scales before

Z production cross-section measurement

- Particularly important for constraining *u*-, *d*-quark PDFs at high *x* region
- Using LHCb 2016, 2017 and 2018 data: 5.1 \pm 0.1 $\rm fb^{-1}$
- Very high purity, N_{bkg}/ N_{sig} ~2%

Z differential cross section: y(Z) and ϕ_{η}^*

- ϕ_{η}^* : the scattering angle of the muons with respect to the proton beam direction in the rest frame of the dimuon system
- Reasonable agreement between data and predictions

2022/7/7

ICHEP 2022

Z double differential cross-section

2022/7/7

ICHEP 2022

Z Integrated cross section

The most precise measurement in the forward region @ 13TeV

 $\sigma(Z \rightarrow \mu^{+}\mu^{-}) = 196.4 \pm 0.2 \text{ (stat.)} \pm 1.6 \text{ (sys.)} \pm 3.9 \text{ (lumi.) pb}$

[JHEP 07 (2022) 026]

7

Source	$\Delta\sigma/\sigma$ [%]
Statistical	0.11
Background	0.06
Alignment & calibration	
Efficiency	0.77
Closure	0.23
FSR	0.15
Total Systematic (excl. lumi.)	0.82
Luminosity	2.00
Total	2.16

Z angular coefficient (A_i) measurement

- The kinematic distribution of the final-state leptons provides
 - > A direct probe of the polarization of the intermediate gauge boson
 - > Information about the QCD mechanisms underlying the boson production mechanism

[arXiv:2203.01602]

- The first measurements of the angular coefficients of Drell-Yan $\mu^+\mu^-$ pairs in the forward rapidity region of pp collisions @ 13TeV
- Measurements are at Born level

 $A_i - p_T(Z)$

 The uncertainty is dominated by statistical uncertainty

2022/7/7

A_i - Boer-Mulders TMD

- Bore-Mulders TMD: describes correlation between a transversely polarized quark or antiquark in an unpolarized proton and the quarks' own nonperturbative momentum with the proton
- Unclearly nonperturbative spin-momentum correlations in the proton could lead to large variations in the lowest p_T region for the low-mass region as no phenomenological calculations are available

Intrinsic charm

- Extrinsic charm content of the proton arises due to perturbative gluon radiation
- Light front QCD predict non-perturbative intrinsic charm existents as valence-like charm content in the PDFs of proton

 $|\text{proton}\rangle = |uud\rangle + \epsilon |uudc\overline{c}\rangle$?

2022/7/7

ICHEP 2022

Z + c measurement

- First study of Z boson produced in association with charm in the forward region, using full Run-II data, with optimized charm-jet identification [JINST 17 (2022) P02028]
- Measure $\sigma(Z_c)/\sigma(Z_j)$
 - At NLO a percent-level valence-like IC contribution would produce significant enhancement in the ratio at high y(Z) region
 - > IC-allowed model at high y(Z) is largely unconstrained
 - Many jet-related systematics cancel in the ratio

[[]Phys. Rev. Lett. 128 (2022) 082001]

Z bosons	$p_{\rm T}(\mu) > 20 {\rm GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 {\rm GeV}$
Jets	$20 < p_{\rm T}(j) < 100 { m GeV}, 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \text{ hadron}) > 5 \text{GeV}, \Delta R(j, c \text{ hadron}) < 0.5$
Events	$\Delta R(\mu,j) > 0.5$

Z + c - Results

- Clear enhancement in highest y bin
- Inconsistent with No-IC theory at $>3\sigma$
- More consistent with expected effect from $|uudc\bar{c}\rangle$ component predicted by LFQCD
- Incorporating forward results into a global analysis should strongly constrain the large-x charm PDF
- Current results are statistically limited, Run-III dataset will allow for finer binning

- Precision measurement at hadron colliders is crucial for the knowledge of the PDFs
- LHCb detector has proved its capability to do high-precision measurements of EW observables
- LHCb detector can probe perturbative QCD and EW theory in a novel region of phase space and provide important and unique information to the PDFs global fitting, especially in the large and small *x* region
- With the increased statistics in RunIII, more exciting results are expected

Back Up

The Impact of The LHCb Data on PDF

LHCb data has a significant impact in NNPDF both in terms of shifting the central value of the large-x quarks and in terms of reducing the PDF uncertainties [arXiv:2109.02653]

2022/7/7

ICHEP 2022

Z differential cross section: Z- p_T

ICHEP 2022

17

 $A_i - y(Z)$

- Reasonable agreement between the measurements and ResBos calculations for A_0 to ΔA_4
- A₀ A₂: differences between measurements and predictions, especially in the highest y region
 - > A y(Z) dependence in the QCD resummation or higher-order effects

ICHEP 2022

Bore-Mulders TMD PDF

- Bore-Mulders function
 - Describes a correlation between a transversely polarized quark (antiquark) in an unpolarized proton and the quarks' own nonperturbative momentum with the proton
 - Lead to an azimuthal $\cos(2\theta)$ dependence in Drell-Yan
- Transvers Momentum Dependent PDFs: TMD
 - > The general PDFs describes the parton inside a proton
 - > Admit a finite quark transverse momentum k_T
 - > Correlation between parton momentum and hadron spin

Z + c - Systematics uncertainties

|--|

Source	Relative Uncertainty
c tagging	6-7%
DV-fit templates Jet reconstruction	${3-4\% \atop 1\%}$
Jet $p_{\rm T}$ scale & resolution	1%
Total	8%

- Leading systematic uncertainty due to *c*-tagging calibration [LHCb-DP-2021-006]
- Systematics almost cancel between y(Z) bins
 - > **Double ratios** have good potential for future precision measurements

Z + c – displaced vertex c-tagger

- Reconstruct displaced vertices within jets
- Use 2D fit to corrected mass and number of tracks to distinguish charm jets from beauty and light
- $m_{\rm cor}({\rm DV}) \equiv \sqrt{m({\rm DV})^2 + [p({\rm DV})\sin\theta]^2} + p({\rm DV})\sin\theta$
- Templates from flavour-enhanced calibration samples

ICHEP 2022

$gc \rightarrow Zc$ models

- NO IC [J. Phys. G43 (2016) 023001]
 - PDF4LHC15 purely extrinsic
 - IC allowed
 [Eur. Phys. J C76 (2016) 647]

 [JHEP 04 (2015) 040]
 - NNPDF3.0 IC allows global fit to include intrinsic charm where not excluded by existing measurements
 - > Uncertainties: experimental limits
 - LFQCD $\langle x \rangle_{\text{IC}} = 1\% [\text{JHEP 02 (2018) 059}]$
 - BHPS3 PDF set based on LFQCD calculations with a fixed intrinsic charm contribution
 - > Uncertainties: model assumptions

Prospects

- *W* charge asymmetry
 - > Valence quark: u and d
- *W* cross-section measurement
 - > *s* quark PDFs
- *V*+jet and other measurements
 - Large-x gluon, Medium-x gluon, strangeness....