Short and intermediate distance HVP contributions to muon g-2: SM (lattice) prediction versus e+e- annihilation data

Roberto Frezzotti (Roma Tor Vergata) - on behalf of the ETMC

- C. Alexandrou, S. Bacchio, P. Dimopoulos, J. Finkenrath, M. Garofalo
- G. Gagliardi, K. Hadjiyiannakou, K. Jansen, V. Lubicz, B. Kostrzewa, M. Petschlies, F. Sanfilippo, S. Simula, C. Urbach, U. Wenger

July 8th, 2022

ICHEP 2022

Bologna, Italy

Photon Hadronic Vacuum Polarization (HVP) from Lattice QCD

Talk based on ETM Collaboration, C. Alexandrou et al. arXiv:2206.15084 (June 30)

e.m. quark current J_{μ} :

$$\begin{split} \Pi_{\mu\nu}(Q) &= \int d^4x \, e^{iQ\cdot x} \, \left\langle J_\mu(x) J_\nu(0) \right\rangle = \left(\delta_{\mu\nu} Q^2 - Q_\mu Q_\nu \right) \Pi(Q^2) \\ a_\ell^{\rm HVP} &= 4 \alpha_{\rm em}^2 \int_0^\infty dQ^2 \, \frac{1}{m_\ell^2} \, f\left(\frac{Q^2}{m_\ell^2}\right) \cdot \left(\Pi(Q^2) - \Pi(0)\right) \end{split} \tag{Blum, 2002}$$

Time-Momentum representation (Bernecker & Meyer, 2011)

$$a_\ell^{
m HVP} = 2lpha_{\it em}^2 \int_0^\infty dt \, \left[2 {\it K}_\ell(t)
ight] \, {\it V}(t), \qquad {\it V}(t) \equiv -rac{1}{3} \sum_{i=1,2,3} \int dec x \, \left\langle {\it J}_i(ec x,t) {\it J}_i(0)
ight
angle$$

$\underline{a}_{u}^{\text{HVP}}$ window observables \rightarrow probing $R^{\text{had}}(E)$

RBC/UKQCD window decomposition: $a_{\mu}^{HVP} \equiv a_{\mu}^{SD} + a_{\mu}^{W} + a_{\mu}^{LD}$,

$$a_{\mu}^{\mathrm{HVP}} \equiv a_{\mu}^{\mathrm{SD}} + a_{\mu}^{\mathrm{W}} + a_{\mu}^{\mathrm{LD}}$$

i.e. observables defined using Euclidean-time modulating functions $\Theta^{\text{SD,W,LD}}(t)$ s.t.

$$a_{\mu}^{w} = 2\alpha_{em}^{2} \int_{0}^{\infty} dt \left[t^{2} K(m_{\mu}t) \right] \underbrace{\Theta^{w}(t)}_{0.8} V(t) \qquad w = \{SD, W, LD\} ,$$

probe the R^{had} ratio of $e^+e^- \rightarrow hadrons$ in different regions of c.o.m. energy E

$$a_{\mu}^{w} = \frac{2\alpha_{\text{em}}^{2}m_{\mu}^{-1}}{9\pi^{2}}\int_{E_{\text{thr}}}^{\infty} dE \left\{ \frac{m_{\mu}^{3}}{E^{3}} \ \widetilde{K}\left(\frac{E}{m_{\mu}}\right) \ \underline{\widetilde{\Theta}}^{w}(E) \right\} R^{\text{had}}(E) \ ,$$

⇒ a key test of SM (lattice QCD+QED) v.s experiment

(independent of g_{μ} – 2!)

Sketch of the lattice computation of a_{μ}^{SD} and a_{μ}^{W}

We compute the $\ell \equiv u/d$, s, c, quark-line connected and disconnected contributions to a_{μ}^{SD} and a_{μ}^{W} — on twisted mass fermion gauge ensembles in the limit $m_{u} = m_{d}$

$$V_{conn}^{ff\prime}(t) \equiv -rac{1}{3} \sum_{i=1,2,3} \int d^3x \left\langle J_i^{ff\prime}(\overrightarrow{x},t) \ J_i^{f\prime f}(0)
ight
angle = rac{q_i^2}{f} imes V_{disc}^{fh}(t) \equiv -rac{1}{3} \sum_{i=1,2,3} \int d^3x \left\langle J_i^{ff}(\overrightarrow{x},t) \ J_i^{hh}(0)
ight
angle = -q_t q_h imes V_{disc}^{fh}(t)$$

- physical point quark masses (interpolated), linear size $L \sim 5.4 \div 7.6$ fm
- 3 (or 4) lattice spacings \times 2 UV regularizations, nice a^2 (or $a^2 + a^4$) scaling
- a_{μ}^{SD} for the first time with exact removal of $O(a^2 \log(a^2))$ artifacts
- local vector currents with very precise (better than 0.1%) chiral covariant normalization (from WTI & hadronic methods)
- using PT (via "rhad" 2002 package) for $a_{\mu}^{SD}(b)$ and $a_{\mu}^{SD}(QED)$; lattice BMW-20 data for isospin breaking effect $a_{\mu}^{W}(IB)$: all tiny & accurate ...

Lattice setup and analysis - 1

Extensive Monte Carlo simulations of Lattice QCD with 2 + 1 + 1 sea quarks:

- Iwasaki gluons + Wilson-clover twisted mass fermions \Rightarrow only $O(a^{2n})|_{n\geq 1}$ artifacts
- ullet mixed action setup (dealing flexibly with terms in V(t) of different size / accuracy)

$$V(t) = V_{conn,r}^{\ell\ell}(t) + V_{conn,r}^{ss}(t) + V_{conn,r}^{cc}(t) + V_{disc,OS}^{all}(t) , \qquad \text{regularization } r = \{\textit{tm},OS\}$$

ullet tuning of M_π to 135 MeV, continuum limit and finite-L corrections: e.g. via fit ansatz

$$\left[a_{\mu}^{w}(..)+\Delta a_{\mu}^{w}(L)+F_{1}^{r}a^{2}\frac{\partial}{\partial M_{\pi}}\Delta a_{\mu}^{w}(L)\right]\left[1+A(M_{\pi}-M_{\pi}^{phys})+D_{1}^{r}\frac{a^{2}}{[\log(a^{2}/w_{0}^{2})]^{n_{r}}}+D_{2}^{r}a^{4}\right]$$

 $\mathbf{a}_{\mu}^{w}(..), \mathbf{A}$ (r-independent), $\mathbf{F}_{1}^{r}, \mathbf{D}_{1}^{r}$ and \mathbf{D}_{2}^{r} are free fitting parameters $(n_{r}=0,...,3)$

 $\Delta a_{\mu}^{w}(L)$: from a 2-pion (MLLGS) model of Finite Size Effects tuned to reproduce known lattice data (needed only for .. = ℓ)

term $\propto F_1^r$ describes a^2 -dependent FSEs due to $\mathrm{O}(a^2)$ distortions of the pion spectrum.

• for each $a_{\mu}^{W}(..)[..=\ell, s, c, disc]$ O(50) different fits are separately decided & done, results (X_k) from the (N) fits with good χ^2 /dof are kept and combined according to $X = \sum_{k=1}^{N} \frac{1}{N} X_k$, $\sigma_X^2 = \sum_{k=1}^{N} \frac{1}{N} \sigma_k^2 + \sum_{k=1}^{N} \frac{1}{N} (X_k - X)^2$

Lattice setup and analysis - 2

Isospin symmetric QCD inputs: $M_{\pi}^{iso}=135.0(2)~\text{MeV},~f_{\pi}^{iso}=130.4(2)~\text{MeV}$

Lattice setup and analysis - 3

Isospin symmetric QCD inputs: $M_K^{iso} \Leftrightarrow M_\phi^{exp} \Leftrightarrow M_{\eta_s}^{iso}$, $M_D^{exp} \Leftrightarrow M_{J/\psi}^{exp} \Leftrightarrow M_{\eta_c}^{exp}$

a_{μ}^{HVP} window observables: lattice results + comparison

Ref.	$a_{\mu}^{SD}(\ell) \ 10^{10}$	$a_{\mu}^{SD}(s) 10^{10}$	$a_{\mu}^{SD}(c) 10^{10}$	$a_{\mu}^{SD}(disc.) 10^{10}$
ETMC-22	48.27 (0.22)	9.071 (75)	11.64 (0.16)	-0.006 (5)
_	_	_	_	_
Ref.	$a_{\mu}^{W}(\ell) 10^{10}$	$a_{\mu}^{W}(s) 10^{10}$	$a_{\mu}^{W}(c) 10^{10}$	$a_{\mu}^{W}(disc.) 10^{10}$
ETMC-22	205.1 (1.0)	27.27 (0.24)	2.95 (0.13)	-0.77 (0.17)
BMW-20	207.3 (1.4)	27.18 (0.03)	2.7 (0.1)	-0.85(0.06)
CLS/Mainz-22	207.0 (1.5)	27.68 (0.28)	2.89 (0.14)	-0.81 (0.09)
χ QCD-22	206.7 (1.5)	26.7 (0.3)	-	-
average	206.30 (0.67)	27.18 (0.03)	2.82 (0.08)	-0.83 (0.05)

- individual a_u^W terms all self-consistent \Rightarrow clear success of LQCD computations
- a_{μ}^{SD} terms above + "rhad" PT terms $a_{\mu}^{SD}(b) = 0.32 \cdot 10^{-10} + a_{\mu}^{SD}(QED) = 0.03 \cdot 10^{-10}$ $\Rightarrow a_{\nu}^{SD}(ETMC - 22) = 69.33(29) \cdot 10^{-10}$
- a_{ii}^W terms above + "BMW-20" QED + strong IB correction $a_{ii}^W(IB) = 0.43(4) \cdot 10^{-10}$ $\Rightarrow a_{\mu}^{W}(ETMC - 22) = 235.0(1.1) \cdot 10^{-10}$
- compatible at 1.0 σ_{combined} level with $a_{\mu}^{W}(\text{BMW}-20) = 236.7(1.4) \, 10^{-10}$
- compatible at 1.3 σ_{combined} level with $a_u^W(\text{CLS}-22) = 237.30(1.46) \, 10^{-10}$

a_{μ}^{HVP} window observables: SM (lattice) vs. experiment (R^{had})

SM predictions from lattice QCD + QED (col. 2,3,4) against Rhad data driven results (col. 5, 6)

latt. "aver." $\ \leftrightarrow \$ our average of the "independent" results from ETMC-22, CLS-22 and BMW-20

WP-proc.('22) \leftrightarrow 2205.12963 (Colangelo et al.) with merging procedure of 2006.04822 (WP)

 $\begin{array}{ll} \text{KNT('19-'22)} \ \leftrightarrow \ \text{Keshavarzi, Nomura, Teubner: 1911.00367 + private communication (2022)} \end{array}$

obs.(HVP-LO)	ETMC-22	BMW-20	latt. "aver."	WP-proc.('22)	KNT('19-'22)
a) $a_{\mu}^{\rm SD} 10^{10}$	69.33(29)	_	_	68.4(5)	68.44(48)
b) $a_{\mu}^{W} 10^{10}$	235.0(1.1)	236.7(1.4)	236.08(74)	229.4(1.4)	229.51(87)
c) $a_{\mu}^{\text{HVP}} 10^{10}$	_	707.5(5.5)	-	693.0(3.9)	692.78(2.42)

- a) Agreement at 1.6 $\sigma_{combined}$ level
- b) Tension at 4.2 (or 5.8) $\sigma_{combined}$ level ! [BACKUP]
- c) Tension at 2.1 (or 2.4) $\sigma_{combined}$ level

$$a_{\mu}^{w} \propto \int_{E_{thr}}^{\infty} dE \underbrace{\left\{ rac{m_{\mu}^{3}}{E^{3}} \; \widetilde{K} \left(rac{E}{m_{\mu}}
ight) \; \widetilde{\Theta}^{w}(E)
ight\}}_{} R^{had}(E)$$

Final remarks & questions

- "... accurate lattice results in the short and intermediate windows hint at possible deviations of the e^+e^- cross section data with respect to SM predictions distributed somewhere in the low (and possibly intermediate) energy regions, but not in the high energy region." (ETMC-22)
- ullet a_{μ}^{W} represents a strong & theoretically clean probe of $e^{+}e^{-}
 ightarrow 2$ (3) pions physics
- new ETMC result on a_{μ}^{SD} shows agreement within errors of SM theory with $R^{\rm had}(E)$ large E [in line with CLS/Mainz 2203.08676 work on $\Delta\alpha$], as needed for consistency of the photon HVP with EW precision tests [see e.g. Sirlin et al. 2006.12666, Crivellin et al. 2003.04886]
- now experiments are challenged to reduce errors on e^+e^- data (e.g. resolving tensions between KLOE + BESIII and BABAR) ... pushing the a_μ^W discrepancy to the discovery level?
- research on the original g_μ 2 puzzle (discrepancy between experimental measurement and data-driven+SM determination of a_μ) has led to find a possible failure of the SM in the description of $e^+e^-\to$ hadrons data at low and intermediate $E\to$ the "photon HVP problem"
- further lattice studies are needed (in progress) to improve accuracy on a_{μ}^{LD} and see whether a pure SM prediction for $a_{\mu}^{\rm HVP}$ brings a_{μ} to agree with experiment (as suggested by BMW-20) or not. Anyway, the "photon HVP problem" (if confirmed) sheds a new light on the $g_{\mu}-2$ puzzle!

Further remarks & outlook

- search for New Physics scenarios explaining "photon HVP problem" and $g_{\mu}-2$ puzzle while fullfilling all known constraints has just started. For instance models of "light" NP, with a new vector boson of mass \lesssim 1 GeV: Darmé et al. 2112.09139,Di Luzio et al. 2112.08312. Else?
- lattice and data-driven results for window and full HVP (LO) a_μ -observables look compatible, within errors, with an overall few-percent shift of the $e^+e^-\to\pi^+\pi^-$ data at c.o.m E<1 GeV

	(LQCD) $a_{\mu}^{\mathbf{w}}(e^{+})$	e^-) [**] $\Delta a_\mu^{\rm w}$	$a_{\mu}^{w}(2\pi)$ [**]	$\Delta a_{\mu}^{\mathbf{w}}/a_{\mu}^{\mathbf{w}}(2\pi)$
μ	3 (0.3) [*] 68.4	(0.5) 0.9 (0.6) 13.7 (0.1)	0.066 (43)
μ	0 (1.1) [*] 229.4	(1.4) 5.6 (1.8) 138.3 (1.2)	0.040 (13)
$a_{\mu}^{\rm HVP}$ 707.5	(5.5) [***] 693.0	(3.9) 14.5 (6.7	(3.6)	0.029 (14)

- [*] = ETMC-22; [**] = Colangelo et al. 2205.12963; [***] BMW-20
- "photon HVP problem" seen by pushing theory to $\lesssim 0.5\%$ accuracy in the vector channel. Any other tensions in hadronic physics if/when SM-lattice theory is pushed to such a high precision?
- Technical outlook about ETMC "homework"
- i) Direct computation of QED and strong IB correction on ETMC ensembles
- ii) New ensembles at very large L to evaluate a_{μ}^{LD} (controlling finite L effects)
- iii) New ensembles at physical m_π with one finer and one coarser lattice spacing

Thanks to organizers, convenors and audience ...

THANKS FOR YOUR ATTENTION!

Backup: average of lattice a_{μ}^{W} -results & tension with exp. data

$$a_{\mu}^{w} \propto \int_{E_{thr}}^{\infty} dE \underbrace{\left\{ rac{m_{\mu}^{3}}{E^{3}} \ \widetilde{K} \left(rac{E}{m_{\mu}}
ight) \ \widetilde{\Theta}^{w}(E) \right\}}_{} R^{had}(E)$$

- our average <u>(grey band)</u>: based on results with the dominating contributions evaluated using i) at least 3 lattice spacings (for the limit $a \to 0$), ii) some ensembles with physical pion mass.
- This excludes RBC/UKQCD-18 (due to i)) and ETMC-21 (due to ii), superseded by ETMC-22).
- strong tension with a_{μ}^W (HVP-LO) results driven by experimental e^+e^- data : at $\sim 4.2\sigma_{combined}$ if WP-proc.('22) (2205.12963, Colangelo et al.), see <u>light-red band</u>, is used at $\sim 5.8\sigma_{combined}$ if KNT('19-'22) (1911.00367 + private comm.), see <u>dashed lines</u>, is used