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Context

e QCD jets appear in every LHC collision. Their structure spans
energy scales from the O (100 MeV) to the O (5TeV)

e This range makes jets and jet substructure a powerful tool for

both new particle searches, as well as precision measurements

CMS Experiment at the LHC, CERN
Data : 2016-May-20 22:35:55.226560 GMT
Run / Event / LS: 274199 / 548714092 / 285
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1. Lund multiplicity

A new way of counting jets

2. Predicting the average multiplicity

New advance in high-resolution regime

3. Phenomenology at LEP and the LHC

Uncertainties below 5%
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Lund multiplicity



Lund multiplicity algorithm

Is a new way of evaluating the multiplicity at colliders.

1. Begin with an anti-k; jet (LHC), an event hemisphere (ete™),
any object.

2. Choose a resolution parameter ki cut
3. Re-cluster the object with Cambridge/Aachen

4. Traverse back through the clustering tree and count the number
of declusterings with k; > ki cut, adding +1 for the initial jet.”

* ke = min(E1, E2) sin 612 for 070~ collider.

For pp collisions use k¢ = min (k1 j,, k1 j, ) AR;, js-
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Lund multiplicity algorithm

Proof of concept: Both hemispheres in eTe™ collisions at LEP

e Because of their angular-ordered nature, conventional Cambridge
jet multiplicity is closely related to Lund multiplicity, so we
computed both. In this talk I will focus on the former.

e Multiplicity varies from event to event. This talk is about
computing the average multiplicity (V)
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Predicting the average Lund and
Cambridge multiplicities




Structure of average multiplicity at low k; cut

o AS kicut < +/s, the dominant Feynman diagrams become

emission from
- emission from
etc.

e In this limit, two large logarithms L = In (k¢ cut/+/s) appear for

each emission — o, L2 for 1, or [a,L?]" for n emissions

o As a,L? ~ 1, one sums the effect of an infinite number of

emissions, so-called “double-logarithmic” (DL) counting

(N(as, L)) = (N(as,0)) \D,I_J, + NDL +NNDL+...

((stz)n agL2n—1 a‘rsLL2n72
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Structure of multiplicity at low £; cu¢

(N(OcS,L)):<N(aS,0)>{ QB + NDL +NNDL+...]

(aSLZ)n u?L2n—1 aZ,LZn—Q

e We developed a novel resummation formalism which works as
1. Enumerate the possible corrections going from N*DL — N*+1DL
2. For each contribution, compute a fixed-order correction kernel K
3. Use K and NSFDL to account for the effect at all orders.

e For example, going from DL — NDL, exactly one emission in a

chain of n is not soft-and-collinear (done in 1991)

KR KV
AN S yen U o

n(PL) 0y Z’;

v[ n(PL) 0 Ll V(L)

Kypr \ ’4‘ 5 \

N©®D N®D soft-collinear (DL)
nested emissions

N(DL)

=With this we computed (N) up to NNDL accuracy
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NNDL accurate average multiplicity

Based on emission phase-space we first identified 16 contributions...
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NNDL accurate average multiplicity

Based on emission phase-space we first identified 16 contributions...
And resummed them with our developed formalism

Cr
2mh{) = DI 4 (DI + DI F’(msh v—1)+ DM coshw (4.71)
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Phenomenology at LEP and the
LHC




Predictions vs LEP data

Modelling non-perturbative effects with parton showers and matching
to exact O (az) we compared our predictions to LEP measurements.
OPAL Cambridge multiplicity
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Predictions vs LEP data

Modelling non-perturbative effects with parton showers and matching
to exact O (az) we compared our predictions to LEP measurements.
OPAL Cambridge multiplicity
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Size of statistical improvement

Uncertainty @ 3GeV | NDL | NNDL
Perturbative 4.7% | 2.8%
Non-perturbative 2.5%
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Lund multiplicity at the LHC [Work in progress]

e Looking inside jets at the LHC: dijets and Z+jet
(i) Re-cluster a high-p; jet with Cambridge/Aachen
(ii) Traverse backwards and count the number of declusterings with
ki > ki cut, +1 for initial jet
e Currently working on predictions at NNDL accuracy

Anti- kt jet y
radius R

pp — dijets @ LHC
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Conclusions

1. Lund multiplicity is a new observable for precision jet
substructure measurements, applicable to LHC, FCC-ee, ...

Valuable for as extraction, validation of new generation of parton showers

2. We have developed a new formalism to predict the average
multiplicity in collider events

First NNDL accurate multiplicity result

3. We have produced predictions that allow for sub-5% accuracy on
measurements at lepton colliders

Current on-going effort to extend the calculation to LHC jets
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The Lund Jet plane

Lund multiplicity gets its name from the Lund jet plane, a modern jet

substructure technique:
i) Begin with a jet of interest (e.g. anti-k; jet at the LHC)
ii) Recluster it with the Cambridge/Aachen jet algorithm
iii) Traverse backwards through the clustering sequence and at each

de-clustering record {kt, AR?,m?, } This information can be

represented with a Lund diagram

InQ,

Ink,
n

Q> Ey > Ey > B3> ke
1> 6> 0,> 03
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The resummation method: NDL example

In Qq
e The correction kernel K™V is depen-

dent on the kinematic region.
For NDL: blue region

In k¢ cut

e Example: hard-collinear correction

1
s 2C
KR=2 [ 4 [ng(z) - A] = KV
™ Jo z
e Schematically resum by adding towers of soft-collinear emissions
after (N(PL) or before (n(PY)) the correction:
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