Measurement of the $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and its contribution to the muon $\boldsymbol{g}-2$

Fabio Anulli

fabio.anulli@,roma1.infn.it
on behalf of the BABAR Collaboration

International Conference on High Energy Physics ICHEP 2022 - Bologna, July 6-13, 2022

Hadronic contribution to a_{μ}

Dominated by the Hadronic Vacuum Polarization LO. Can be calculated by using dispersion relations
calculation

The process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ gives the second largest contribution to $a_{\mu}^{h a d, L O-V P}$ and its uncertainty

The Initial State Radiation method

$$
\frac{d \sigma_{e^{+} e^{-} \rightarrow f \gamma}\left(s, m_{f}\right)}{d m_{f} d \cos \theta_{\gamma}^{*}}=\frac{2 m_{f}}{s} W\left(s, x, \theta_{\gamma}^{*}\right) \cdot \sigma_{e^{+} e^{-} \rightarrow f}\left(m_{f}\right)
$$

- The hadronic cross section $e^{+} e^{-} \rightarrow f$ can be extracted from the ISR cross section $e^{+} e^{-} \rightarrow \gamma f$.
- The radiator function $W(s, x)$ is calculated in QED with accuracy better than 1% level

BABAR display of a typical ISR event

Common ISR analysis strategy

- Tagged analysis ($\mathrm{E}_{\gamma}{ }^{*}>3 \mathrm{GeV}$)
- Back-to-back topology btw ISR γ and the rest of the event
- $\pi / \mathrm{K} / p$ discrimination based on $\mathrm{dE} / \mathrm{dx}$ e Cherenkov angle
- Kinematic fit for 4-momentum conservation
- Fitted χ^{2} used for signal selection and background subtraction
- Detector acceptances and selection efficiencies estimated with MC simulation

The BABAR ISR program for light hadrons

- 30 publications for more than 40 final states studied
- Almost any channel from 2 to 7 light hadrons in the final state
- Many first measurements and significant precision improvement in most cases
- Discoveries (e.g. $\phi(2170)$ in $\left.e^{+} e^{-} \rightarrow \phi(1020) f_{0}(980)\right)$
- Most precise measurement of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$

Today's presentation:

$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ updated with the full data sample of $460 \mathrm{fb}^{-1}$ [Phys.Rev.D104, 112003 (2021)] Preliminary results on $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \pi^{0} \pi^{0}, e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{0} \pi^{0}, e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$

Fit to the 3π mass spectrum

The fit to the measured mass spectrum is based on the VMD model with $\omega(782)+\omega(1420)+\omega(1680)+\phi(1020)+\rho(770)$

- The true spectrum is smeared to account for data-MC difference in the mass resolution, and then multiplied by the transfer matrix obtained from simulation for the unfolding

- Parameters fitted for ω and ϕ in good agreement with world average
$\Gamma_{\omega \rightarrow e^{+} e^{-}} \mathscr{B}_{\omega \rightarrow \pi^{+} \pi^{0} \pi^{0}}=(0.5698 \pm 0.0031 \pm 0.0082) \mathrm{keV}$ $\Gamma_{\phi \rightarrow e^{+}-}-\mathscr{B}_{\phi \rightarrow \pi^{+} \pi^{0} \pi^{0}}=(0.1841 \pm 0.0021 \pm 0.0080) \mathrm{keV}$ PDG: $\Gamma_{\omega} \times \mathscr{B}=0.557 \pm 0.011 \mathrm{keV}$

$$
\Gamma_{\phi} \times \mathscr{B}=0.1925 \pm 0.0043 \mathrm{keV}
$$

- The $\rho \rightarrow 3 \pi$ decay needed to describe the data
- The significance of $\rho \rightarrow 3 \pi$ is greater than 6σ
- In agreement with SND PRD68, 052006 (2003)

	$\mathrm{BF}(\rho \rightarrow 3 \pi) \times 10^{4}$	φ
BABAR	$0.88 \pm 0.23 \pm 0.30$	$-(99 \pm 9 \pm 15)^{\circ}$
SND	$1.01_{-0.36}^{+0.54} \pm 0.34$	$-\left(135_{-13}^{+17} \pm 9\right)^{\circ}$

$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ cross section for $\mathbf{m}_{3 \pi}<1.1 \mathrm{GeV} / \mathrm{c}^{2}$ $\frac{d N}{d m}=\sigma_{3 \pi}(m) \frac{d \mathcal{L}}{d m} R \varepsilon \quad \frac{d \mathcal{L}}{d m}=\frac{\alpha}{\pi x}\left(\left(2-2 x+x^{2}\right) \log \frac{1+C}{1-C}-x^{2} C\right) \frac{2 m}{s} \mathcal{L}$.
[PRD104, 112003 (2021)]

- The mass spectrum has sharp structures and unfolding is required to obtain the true spectrum.
- Unfolding performed with the IDS (iterative, dynamically stabilized) method B. Malaescu, arXiv:0907.3791

- Bin-width in the peaks regions: 2.5 MeV
- Systematic uncertainties at resonance peaks amount to about 1.3% (most precise results)

Comparison with existing measurements

[PRD104, 112003 (2021)]

ω region

ϕ region

- Only statistical errors included in the plots
- In the ω region there is good consistency between $B A B A R$ and SND, while CMD-2 data lie about 7% below $B A B A R$, with a difference of order 2.5σ
- At the ϕ CMD-2 data (2.5% syst. uncert.) are about 3% above $B A B A R$, while SND data (5% syst. uncert.) are about 11% higher

SND:

- PRD 63, 072002 (2001)
- PRD 68, 052006 (2003)

CMD-2:

- PLB 578, 285 (2004)
- PLB 642, 203 (2006)

$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ cross section above $1.1 \mathrm{GeV} / \mathrm{c}^{2}$

[PRD104, 112003 (2021)]

- No narrow structures
- Bin size 25 MeV (100 MeV for $m_{3 \pi}>2.7$ GeV)
=> no need for unfolding
- Systematic uncertainties (4-15\%) dominated by background subtraction
- SND 2020: Eur. Phys. J. C80, 993 (2020)
- Sizable difference between SND and BABAR data near 1.25 and 1.5 GeV .
- General agreement elsewhere.
- SND systematic uncertainties are 4.4%

Calculation of the contribution to a_{μ}

$$
\begin{gathered}
a_{\mu}=\frac{\alpha^{2}}{3 \pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \frac{K(s)}{s} R(s) d s, R(s)=\frac{\sigma_{0}\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)(s)}{4 \pi \alpha^{2} / s} \\
\sigma_{0}\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)(s)=\sigma_{3 \pi}(s)|1-\Pi(s)|^{2}
\end{gathered}
$$

$M_{3 \pi} \mathrm{GeV} / c^{2}$	$a_{\mu}^{3 \pi} \times 10^{10}$
0.62-1.10 42	$91 \pm 0.14 \pm 0.55 \pm 0.09$
1.10-2.00 BABAR	$2.95 \pm 0.03 \pm 0.16$
<2.00 PRD 104, 112003 (2021	$45.86 \pm 0.14 \pm 0.58$
<1.8[1] DHNZ	$46.21 \pm 0.40 \pm 1.40$
<1.97[50] KNT	46.74 ± 0.94
$<2[51] \quad$ Jegerlehner	44.32 ± 1.48
<1.8[52] HHK	$46.2 \pm 0.6 \pm 0.6$

Result consistent with calculations using previous data Uncertainty on $\mathrm{a}_{\mu}{ }^{3 \pi}$ improved by a factor of about 2

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \pi^{0} \pi^{0} \\
& e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{0} \pi^{0} \\
& e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}
\end{aligned}
$$

$$
e^{+} e^{-} \rightarrow 2 K 3 \pi
$$

- Previously $2 \mathrm{~K} 3 \pi$ final state studied: $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ [PRD76, 092005 (2007)] - Main motivations:
- systematic deviation seen between sum-of-exclusive cross section near 2 GeV and pQCD predictions
- direct measurement of the final states reduces the need of isospin relations for a_{μ} calculation
- study of intermediate states, look for new states or new decay modes of recently discovered states - Analysis method similar to that for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$, but tuned for multi-hadron final states

Measured cross sections:

- systematic uncertainties $\sim 10 \%$
- smaller than $K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ but sizeable
- observation of correlated production of $K^{*} \bar{K}^{*}, K^{*} \rho$ in the top channels, and $\phi \eta$ in the $K^{+} K^{-} 3 \pi^{0}$ final state
- possible "bumps" around 2.4 and 2.17 GeV present in all plots?

$e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \pi^{0} \pi^{0}$ intermediate states

- The cross section is dominated by the channel $e^{+} e^{-} \rightarrow \phi \eta$
- To extract the cross section:
- select events with $m_{K K}<1.05 \mathrm{GeV}$
- divide the $2 K 3 \pi^{0}$ mass spectrum in 50 MeV wide bins
- fit the $3 \pi^{0}$ mass distribution to get the events in the η peak
- account for $\phi \rightarrow K^{+} K^{-}$and $\eta \rightarrow 3 \pi^{0}$ branching fractions
$\sigma\left(e^{+} e^{-} \rightarrow \phi \eta\right)$

Other structures? $\phi(2170)$

- A little bump visible in $e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$at ~ 2170 MeV
- also in the other channels but with less statistical significance
- It might represent a new decay channel of the $\phi(2170)$, discovered by BABAR in $e^{+} e^{-} \rightarrow \phi f_{0}(980)$
- Refine the mass spectrum, with bin size $=10 \mathrm{MeV}$
- Require $m\left(\pi^{+} \pi^{-}\right)<0.7 \mathrm{GeV}$, to remove the contribution from the $\rho(770)$
- Fit the peak with a BW + a $2^{\text {nd }}$ order polynomial

- Parameters consistent with PDG. Significance $>3 \sigma$

$$
N=86 \pm 34 \text { events }
$$

$$
\begin{aligned}
& \frac{\phi(2170)[\mathrm{PDG} 2022]}{m=2.162 \pm 0.007 \mathrm{GeV} / c^{2}} \\
& \Gamma=0.100_{-0.023}^{+0.031} \mathrm{GeV}
\end{aligned}
$$

Summary

- BABAR pioneered the use of the ISR method to precisely measure low-energy exclusive hadronic cross sections
- Recent $B A B A R$ measurement of the process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ [Phys.Rev.D104, 112003]
- Most precise measurement ever of the cross section from 0.62 up to 3.5 GeV
- Systematic uncertainties at the ω and ϕ resonance peaks are $\sim 1.3 \%$
- The precision on $a_{\mu}^{3 \pi}$ is improved by a factor about 2 (for $m_{3 \pi}<2 \mathrm{GeV}$)
- New measurements on hadronic cross sections expected from $B A B A R$ and other experiments (BES III, CMD-3, SND), possibly also Belle II in the future.
- Preliminary results, not published, by BESIII on $\pi^{+} \pi^{-} \pi^{0}$ consistent with BABAR [arXiv:1912.11208]
- Preliminary results on final states with $\mathbf{2 K}$ and $3 \boldsymbol{\pi}$ have been presented
- the very rich dynamic of the process has been explored
- most channels are measured for the first time
evidence for a new decay mode of the $\phi(2170)$, and hints for a confirmation of the $\mathrm{X}(2400)$ The article is in the final review stage and should be soon submitted for publication

Summary

- BABAR pioneered the use of the ISR method to precisely measure low-energy exclusive hadronic cross sections
- Recent $B A B A R$ measurement of the process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ [Phys.Rev.D104, 112003]
- Most precise measuren
- Systematic uncertainti¢
- The precision on $a_{\mu}^{3 \pi}$ is
- New measurements on hadro (BES III, CMD-3, SND), pos
- Preliminary results, not publ
Thanks for 0.62 up to 3.5 GeV re $\sim 1.3 \%$
$m_{3 \pi}<2 \mathrm{GeV}$)
R and other experiments

attention!

BABAR [arXiv:1912.11208]

- Preliminary results on final states with $\mathbf{2 K}$ and 3π have been presented
- the very rich dynamic of the process has been explored
- most channels are measured for the first time
- evidence for a new decay mode of the $\phi(2170)$, and hints for a confirmation of the $\mathrm{X}(2400)$ The article is in the final review stage and should be soon submitted for publication

BACKUP SLIDES

Other structures? X(2400)

- An accumulation at $\sim 2400 \mathrm{MeV}$ seen particularly visible in $e^{+} e^{-} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$
- Visible with less statistical significance also in the other channels

- Shen and Yuan [Chin.Phys.C34, 1045 (2010)] performed a fit to a structure called $\mathrm{X}(2400)$ using all available data from BABAR and Belle
- $m_{X}=2.436 \pm 0.026 \mathrm{GeV} / c^{2}, \Gamma_{X}=0.121 \pm 0.035 \mathrm{GeV}$
- Significance $<3 \sigma$, could be also interpreted as threshold effect
- Adding the events from previously measurec $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ and $e^{+} e^{-} \rightarrow 2\left(\pi^{+} \pi^{-}\right) 3 \pi^{0}$ and make a similar fit:

4
BABAR preliminary
$N=487 \pm 251$ events,
$m=2.44 \pm 0.02 \mathrm{GeV} / c^{2}$,
$\Gamma=0.107 \pm 0.049 \mathrm{GeV}$.
Statistical significance: 3.5σ

The J / ψ region

[PRD104, 112003 (2021)]

$$
\frac{\mathrm{d} \sigma(s, \theta)}{\mathrm{d} \cos \theta}=\frac{12 \pi^{2} \Gamma\left(J / \psi \rightarrow e^{+} e^{-}\right) \mathcal{B}(J / \psi \rightarrow 3 \pi)}{m_{J / \psi} s} W\left(s, x_{J / \psi}, \theta\right)
$$

$$
N_{J / \psi}=4921 \pm 74
$$

$$
\sigma_{s}^{2}=1.8 \pm 2.6 \mathrm{MeV}^{2} / c^{4}
$$

$$
M_{J / \psi}=3.0962 \pm 0.0002 \mathrm{GeV} / c^{2}-(0.7 \pm 0.2) \mathrm{MeV} / c^{2}
$$

$$
\mathcal{B}(J / \psi \rightarrow 3 \pi)=(2.265 \pm 0.034 \pm 0.062) \%
$$

$$
\text { PDG } \quad(2.10 \pm 0.08) \%
$$

BESIII $\quad(2.137 \pm 0.064) \%$

Systematic uncertainties on resonance parameters

TABLE VI: Contributions to the systematic errors of fit parameters from different effects ($P_{1}=$ $\Gamma\left(\omega \rightarrow e^{+} e^{-}\right) \mathcal{B}\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right), P_{2}=\Gamma\left(\phi \rightarrow e^{+} e^{-}\right) \mathcal{B}\left(\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right), P_{3}=\mathcal{B}\left(\rho \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$, $\left.P_{4}=\phi_{\rho}\right)$.

Effect	$P_{1}(\%)$	$P_{2}(\%)$	$P_{3}(\%)$	$P_{4}(\mathrm{deg})$
Luminosity	0.4	0.4	0.4	-
Radiative correction	0.5	0.5	0.5	-
Detection efficiency	1.1	1.1	1.1	-
MC statistics	0.1	0.2	0.2	-
Lorentzian smearing	0.3	0.4	4.7	12
Γ_{ω}	0.4	0.2	13.0	8
Γ_{ϕ}	0.0	0.0	0.3	0
ϕ_{ϕ}	0.2	3.1	6.1	1
Background subtraction	0.1	0.2	7.3	2
$\omega(1680) \rightarrow \rho(1450) \pi$	0.4	2.7	30.0	0
total	1.4	4.3	34.5	15

Breakdown of systematic uncertainties on $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$

Between 0.7 and 1.03 GeV the systematic uncertainty is dominated by the uncertainties in the luminosity, radiative correction and detection efficiency (1.3\%) and is independent of mass. Below 0.65 GeV the largest contribution comes from the unfolding procedure, while above 1.03 GeV from the FSR background.

Unfolding the 3π cross section below 1.1 GeV

To obtain "true" mass spectrum, unfolding is applied to the measured $\mathrm{M}_{3 \pi}$ spectrum. Similar to the previous $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi^{+} \pi^{-}$BABAR analyses, we use the IDS (iterative, dynamically stabilized) method developed by Bogdan Malaesku.

We reweight the signal MC simulation using the results of the fit to the measured mass spectrum and obtain the folding matrix P_{ij}. The matrix is then corrected to take into account the data-MC difference in mass resolution

$$
P_{i j}^{*}=(1-\epsilon) \sum P_{i k} G_{k j}+\epsilon L_{i j}
$$

The unfolding procedure uses the transfer matrix $A_{i j}=P_{i j}^{*} T_{j}$, where T_{j} is the true spectrum obtained in the fit.

Unfolding the 3π cross section below 1.1 GeV

The unfolded spectrum is after the first iteration step. Further iterations do not improve the result.

Good agreement between the fit result and unfolding is seen, which confirms correctness of the model used in the fit.

$B A B A R$ detector and collected data sample

ISR method in a nutshell

Born approximation $\frac{d \sigma_{e^{+} e^{-} \rightarrow f \gamma}\left(s, m_{f}, \theta_{\gamma}^{*}\right)}{d m d \cos \theta_{\gamma}^{*}}=\frac{2 m}{s} W\left(s, x, \theta_{\gamma}^{*}\right) \cdot \sigma_{e^{+} e^{-} \rightarrow f}\left(m_{f}\right)$

$$
x=\frac{E_{\gamma}}{E_{b}} \quad m^{2}=s^{\prime}=s(1-x)
$$

Radiator function (at lowest order):
θ_{γ}^{*} : ISR photon polar angle in the $e^{+} e^{-}$c.m.
$w_{0}\left(s, x, \theta^{*}\right)=\frac{\alpha}{\pi x}\left[\frac{\left(2-2 x+x^{2}\right) \sin ^{2} \theta^{*}-\frac{x^{2}}{2} \sin ^{4} \theta^{*}}{\left(\sin ^{2} \theta^{*}+\frac{4 m_{e}^{2}}{s} \cos ^{2} \theta^{*}\right)^{2}}-\frac{4 m_{e}^{2}}{s} \frac{(1-2 x) \sin ^{2} \theta^{*}-x^{2} \cos ^{4} \theta^{*}}{\left(\sin ^{2} \theta^{*}+\frac{4 m_{e}^{2}}{s} \cos ^{2} \theta^{*}\right)}\right]$

$\operatorname{cross} \operatorname{section} \sigma_{0}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{f}\right) \quad \sigma_{0}\left(m_{i}\right)=\frac{\Delta N\left(m_{i}\right)}{\Delta m^{\text {reconstruction }} \begin{array}{c}\text { efficiency }\end{array}} \frac{1}{\varepsilon\left(s, m_{i}\right)\left(1+\delta_{\text {radiative }}^{\delta_{\text {rad }}}\right) \mathrm{d} \mathcal{L}\left(m_{i}\right) / \mathrm{d} m}$
ISR differential luminosity

$$
\frac{d \mathcal{L}}{d m}=\frac{2 m}{s} \frac{\alpha}{\pi \cdot x} \cdot\left(\left(2-2 x+x^{2}\right) \log \frac{1+C}{1-C}-x^{2} C\right) L_{e e}
$$ - obtained from integration of the radiator function over $\theta_{\gamma}{ }^{*}$ - $20^{\circ}<\theta_{\gamma}{ }^{*}<160^{\circ} \equiv \Rightarrow$ acceptance for ISR photon $\sim 15 \%$ in BABAR - known at $<1 \%$ level

