Linear power corrections to $e^{+} e^{-}$shape variables in the three-jet region

Melih A. Ozcelik

Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology melih.oezcelik@kit.edu
based on arXiv:2204.02247
F. Caola, S. Ferrario Ravasio, G. Limatola, K. Melnikov, P. Nason, M.A. Ozcelik

ICHEP 2022, Bologna, 07 July 2022

Part I

Introduction:
 Renormalons \& Power Corrections

precision at colliders

- improved experimental precision at colliders

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions
- determination of SM parameters: top mass m_{t}, strong coupling α_{s} etc.

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions
- determination of SM parameters: top mass m_{t}, strong coupling α_{s} etc. \rightarrow require higher-order perturbative QCD or electro-weak corrections

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions
- determination of SM parameters: top mass m_{t}, strong coupling α_{s} etc. \rightarrow require higher-order perturbative QCD or electro-weak corrections

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{s}}{\pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\left(\frac{\alpha_{s}}{\pi}\right)^{3} d \sigma_{\mathrm{N}^{3} \mathrm{LO}}+\ldots
$$

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions
- determination of SM parameters: top mass m_{t}, strong coupling α_{s} etc. \rightarrow require higher-order perturbative QCD or electro-weak corrections

$$
d \sigma=d \sigma_{\mathrm{LO}}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right) d \sigma_{\mathrm{NLO}}}_{10 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{2} d \sigma_{\mathrm{NNLO}}}_{1 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{3} d \sigma_{\mathrm{N}^{3} \mathrm{LO}}}_{0.1 \%}+\ldots
$$

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions
- determination of SM parameters: top mass m_{t}, strong coupling α_{s} etc. \rightarrow require higher-order perturbative QCD or electro-weak corrections

Drell-Yan N ${ }^{3}$ LO $\sim 1 \%$ correction

[Duhr, Dulat, Mistlberger; JHEP 11 (2020) 143]

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions
- determination of SM parameters: top mass m_{t}, strong coupling α_{s} etc. \rightarrow require higher-order perturbative QCD or electro-weak corrections

$$
\begin{aligned}
d \sigma= & d \sigma_{\mathrm{LO}}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right) d \sigma_{\mathrm{NLO}}}_{10 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{2} d \sigma_{\mathrm{NNLO}}}_{1 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{3} d \sigma_{\mathrm{N}^{3} \mathrm{LO}}}_{0.1 \%}+\ldots \\
& +\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}\right) d \sigma_{\mathrm{linear}}^{\mathrm{NP}}+\ldots
\end{aligned}
$$

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions
- determination of SM parameters: top mass m_{t}, strong coupling α_{s} etc. \rightarrow require higher-order perturbative QCD or electro-weak corrections

$$
\begin{aligned}
& d \sigma=d \sigma_{\mathrm{LO}}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right) d \sigma_{\mathrm{NLO}}}_{10 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{2} d \sigma_{\mathrm{NNLO}}}_{1 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{3} d \sigma_{\mathrm{N}^{3} \mathrm{LO}}}_{0.1 \%}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& Q \sim 30-100 \mathrm{GeV}
\end{aligned}
$$

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions
- determination of SM parameters: top mass m_{t}, strong coupling α_{s} etc. \rightarrow require higher-order perturbative QCD or electro-weak corrections

$$
\begin{aligned}
& d \sigma= d \sigma_{\mathrm{LO}}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right) d \sigma_{\mathrm{NLO}}}_{10 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{2} d \sigma_{\mathrm{NNLO}}}_{1 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{3} d \sigma_{\mathrm{N}^{3} \mathrm{OO}}}_{0.1 \%}+\ldots \\
&+\underbrace{\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}\right) d \sigma_{\mathrm{linear}}^{\mathrm{NP}}}_{0.1 \%-1 \%}+\ldots \quad \text { with } \Lambda_{\mathrm{QCD}} \sim 300 \mathrm{MeV} \\
& Q \sim 30-100 \mathrm{GeV}
\end{aligned}
$$

precision at colliders

- improved experimental precision at colliders
- in order to detect potential deviations from SM, require precise theory predictions
- determination of SM parameters: top mass m_{t}, strong coupling α_{s} etc. \rightarrow require higher-order perturbative QCD or electro-weak corrections

$$
\begin{aligned}
d \sigma= & d \sigma_{\mathrm{LO}}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right) d \sigma_{\mathrm{NLO}}}_{10 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{2} d \sigma_{\mathrm{NNLO}}}_{1 \%}+\underbrace{\left(\frac{\alpha_{s}}{\pi}\right)^{3} d \sigma_{\mathrm{N}^{3} \mathrm{LO}}}_{0.1 \%}+\ldots \\
& +\underbrace{\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}\right) d \sigma_{\text {linear }}^{\mathrm{NP}}}_{0, \ldots \quad \rightarrow \begin{array}{c}
\text { non-perturbative corrections } \\
\text { may become relevant }
\end{array}}+\ldots, 10
\end{aligned}
$$

non-perturbative physics: Renormalons

- Renormalon model identifies simple class of diagrams that dominate in the large n_{f} limit [Beneke, Braun, Dokshitzer, Marchesini, Smye, Webber, etc.]

- example: 3-jet event $Z^{*} / \gamma^{*} \rightarrow q \bar{q} \gamma$

- each diagram can be computed perturbatively,

$$
\begin{equation*}
d \sigma=d \sigma^{(0)}+\left(\frac{\alpha_{s}}{\pi}\right) d \sigma^{(1)}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} n_{f} d \sigma^{(2)}+\left(\frac{\alpha_{s}}{\pi}\right)^{3} n_{f}^{2} d \sigma^{(3)}+\ldots \tag{1}
\end{equation*}
$$

non-perturbative physics: Renormalons

- can resum leading- n_{f} contributions via integral

$$
\begin{equation*}
\int_{0}^{Q} d k k^{p-1} \alpha_{s}(k)=\alpha_{s}(Q) Q^{p} \sum_{n=0}^{\infty} \underbrace{\left(\frac{\beta_{0}}{2 \pi} \alpha_{s}(Q)\right)^{n} \frac{1}{p^{n+1}} n!}_{\text {factorial growth }}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { with } \quad \alpha_{s}(\mu)=\frac{1}{\frac{\beta_{0}}{2 \pi} \log \frac{\mu}{\Lambda_{Q C D}}}, \quad \beta_{0}=\frac{11}{3} C_{A}-\frac{4}{3} T_{F} n_{f} . \tag{3}
\end{equation*}
$$

- series is not Borel summable, ambiguity given by

$$
\int d k k^{p-1} \frac{2 \pi}{\beta_{0}} \frac{\Lambda_{\mathrm{QCD}}}{k-\Lambda_{\mathrm{QCD}}}= \pm i \pi \frac{2 \pi}{\beta_{0}} \Lambda_{\mathrm{QCD}}^{p}
$$

\rightarrow ambiguity removed by non-perturbative power corrections $\Lambda_{\mathrm{QCD}}^{p} / Q^{p}$

linear power corrections

- power corrections can be computed by considering perturbative corrections with massive gluon of mass λ

- direct relation between $\lambda^{p} \rightarrow \Lambda_{\mathrm{QCD}}^{p}$
- for phenomenological applications only linear terms λ / Q are relevant, higher orders in λ are surpressed by $\mathcal{O}\left(\Lambda_{Q C D}^{2} / Q^{2}\right)$

Part II

Linear power corrections to the C-parameter

Event shapes: The C-parameter

- event shapes describe the geometry of the collision (C-parameter, thrust, ...)

Event shapes: The C-parameter

- event shapes describe the geometry of the collision (C-parameter, thrust, ...)

- definition of C-parameter:

$$
\begin{equation*}
C=3-3 \sum_{i>j}^{N} \frac{\left(p_{i} p_{j}\right)^{2}}{\left(p_{i} q\right)\left(p_{j} q\right)} \tag{4}
\end{equation*}
$$

p_{i} : momentum of particle i
q : sum of all momenta p_{i}
N : number of final-state particles

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s}

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections
- C-parameter: $\alpha_{s}=0.1123 \pm 0.0015$
[A. Hoang et al, (2015), PhysRevD.91.094018]

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections
- C-parameter: $\alpha_{s}=0.1123 \pm 0.0015$
[A. Hoang et al, (2015), PhysRevD.91.094018]
- using only non-perturbative corrections in the 2 -jet limit $C=0$

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections
- C-parameter: $\alpha_{s}=0.1123 \pm 0.0015$
[A. Hoang et al, (2015), PhysRevD.91.094018]
- using only non-perturbative corrections in the 2 -jet limit $C=0$
- several standard deviations away from PDG value
- PDG value: $\alpha_{s}=0.1179 \pm 0.0010$

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections
- C-parameter: $\alpha_{s}=0.1123 \pm 0.0015$
[A. Hoang et al, (2015), PhysRevD.91.094018]
- using only non-perturbative corrections in the 2 -jet limit $C=0$
- several standard deviations away from PDG value
- PDG value: $\alpha_{s}=0.1179 \pm 0.0010$
- non-perturbative corrections at symmetric three-jet point $C=3 / 4$
[G. Luisoni, P. Monni, G. Salam, Eur.Phys.J.C 81 (2021) 2, 158]

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections
- C-parameter: $\alpha_{s}=0.1123 \pm 0.0015$
[A. Hoang et al, (2015), PhysRevD.91.094018]
- using only non-perturbative corrections in the 2 -jet limit $C=0$
- several standard deviations away from PDG value
- PDG value: $\alpha_{s}=0.1179 \pm 0.0010$
- non-perturbative corrections at symmetric three-jet point $C=3 / 4$
[G. Luisoni, P. Monni, G. Salam, Eur.Phys.J.C 81 (2021) 2, 158]
- is half the value compared to 2 -jet limit $C=0$

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections
- C-parameter: $\alpha_{s}=0.1123 \pm 0.0015$
[A. Hoang et al, (2015), PhysRevD.91.094018]
- using only non-perturbative corrections in the 2 -jet limit $C=0$
- several standard deviations away from PDG value
- PDG value: $\alpha_{s}=0.1179 \pm 0.0010$
- non-perturbative corrections at symmetric three-jet point $C=3 / 4$
[G. Luisoni, P. Monni, G. Salam, Eur.Phys.J.C 81 (2021) 2, 158]
- is half the value compared to 2 -jet limit $C=0$
- different interpolation models $C=[0,3 / 4]$

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections
- C-parameter: $\alpha_{s}=0.1123 \pm 0.0015$
[A. Hoang et al, (2015), PhysRevD.91.094018]
- using only non-perturbative corrections in the 2 -jet limit $C=0$
$\zeta(C)$
- 12

[G. Luisoni, P. Monni, G. Salam, Eur.Phys.J.C 81 (2021) 2, 158]

$$
\alpha_{S}\left(M_{z}^{2}\right)
$$

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections
- C-parameter: $\alpha_{s}=0.1123 \pm 0.0015$
[A. Hoang et al, (2015), PhysRevD.91.094018]
- using only non-perturbative corrections in the 2 -jet limit $C=0$
- several standard deviations away from PDG value
- PDG value: $\alpha_{s}=0.1179 \pm 0.0010$
- non-perturbative corrections at symmetric three-jet point $C=3 / 4$
[G. Luisoni, P. Monni, G. Salam, Eur.Phys.J.C 81 (2021) 2, 158]
- is half the value compared to 2 -jet limit $C=0$
- different interpolation models $C=[0,3 / 4] \rightarrow$ significant effect on α_{s} determination

Event shapes: α_{s} determination

- $e^{+} e^{-}$event shapes can be used for precise determination of strong coupling α_{s} \rightarrow need both perturbative and non-perturbative (np) corrections
- C-parameter: $\alpha_{s}=0.1123 \pm 0.0015$
[A. Hoang et al, (2015), PhysRevD.91.094018]
- using only non-perturbative corrections in the 2 -jet limit $C=0$
- several standard deviations away from PDG value
- PDG value: $\alpha_{s}=0.1179 \pm 0.0010$
- non-perturbative corrections at symmetric three-jet point $C=3 / 4$
[G. Luisoni, P. Monni, G. Salam, Eur.Phys.J.C 81 (2021) 2, 158]
- is half the value compared to 2 -jet limit $C=0$
- different interpolation models $C=[0,3 / 4] \rightarrow$ significant effect on α_{s} determination
- for α_{s} determination, we need analytic results in entire 3-jet region!

presence or absence of linear power correction

Statements on presence or absence of linear power corrections: (see G. Limatola's talk)

presence or absence of linear power correction

Statements on presence or absence of linear power corrections: (see G. Limatola's talk)

- virtual corrections do not induce linear corrections

presence or absence of linear power correction

Statements on presence or absence of linear power corrections: (see G. Limatola's talk)

- virtual corrections do not induce linear corrections
- real corrections

presence or absence of linear power correction

Statements on presence or absence of linear power corrections: (see G. Limatola's talk)

- virtual corrections do not induce linear corrections
- real corrections
- hard region does not induce linear corrections

presence or absence of linear power correction

Statements on presence or absence of linear power corrections: (see G. Limatola's talk)

- virtual corrections do not induce linear corrections
- real corrections
- hard region does not induce linear corrections
- soft radiation at next-to-soft approximation may lead to linear corrections

soft radiation at next-to-soft approximation

$$
d \sigma=d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2} \times \mathcal{O}_{\mathcal{O}(k)}
$$

- $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)}$: phase-space
- $|\mathcal{M}|_{\mathcal{O}(k)}^{2}$: matrix element squared
- $\mathcal{O}_{\mathcal{O}(k)}$: observable

soft radiation at next-to-soft approximation

$$
d \sigma=d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2} \times \mathcal{O}_{\mathcal{O}(k)}
$$

- $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)}$: phase-space
- $|\mathcal{M}|_{\mathcal{O}(k)}^{2}$: matrix element squared
- $\mathcal{O}_{\mathcal{O}(k)}$: observable
- total cross-sections and kinematic distribution of colorless particles

soft radiation at next-to-soft approximation

$$
d \sigma=d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2} \times \mathcal{O}_{\mathcal{O}(k)}
$$

- $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)}$: phase-space
- $|\mathcal{M}|_{\mathcal{O}(k)}^{2}$: matrix element squared
- $\mathcal{O}_{\mathcal{O}(k)}$: observable
- total cross-sections and kinematic distribution of colorless particles
- no linear λ-dependence from $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2}$

soft radiation at next-to-soft approximation

$$
d \sigma=d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2} \times \mathcal{O}_{\mathcal{O}(k)}
$$

- $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)}$: phase-space
- $|\mathcal{M}|_{\mathcal{O}(k)}^{2}$: matrix element squared
- $\mathcal{O}_{\mathcal{O}(k)}$: observable
- total cross-sections and kinematic distribution of colorless particles
- no linear λ-dependence from $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2}$
\rightarrow absence of linear power corrections

soft radiation at next-to-soft approximation

$$
d \sigma=d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2} \times \mathcal{O}_{\mathcal{O}(k)}
$$

- $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)}$: phase-space
- $|\mathcal{M}|_{\mathcal{O}(k)}^{2}$: matrix element squared
- $\mathcal{O}_{\mathcal{O}(k)}$: observable
- total cross-sections and kinematic distribution of colorless particles
- no linear λ-dependence from d Lips $_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2}$
\rightarrow absence of linear power corrections
- only source of linear λ-dependence comes from $\mathcal{O}_{\mathcal{O}(k)}$

soft radiation at next-to-soft approximation

$$
d \sigma=d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2} \times \mathcal{O}_{\mathcal{O}(k)}
$$

- $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)}$: phase-space
- $|\mathcal{M}|_{\mathcal{O}(k)}^{2}$: matrix element squared
- $\mathcal{O}_{\mathcal{O}(k)}$: observable
- total cross-sections and kinematic distribution of colorless particles
- no linear λ-dependence from d Lips $_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2}$
\rightarrow absence of linear power corrections
- only source of linear λ-dependence comes from $\mathcal{O}_{\mathcal{O}(k)}$
- condition: $\mathcal{O}_{\mathcal{O}(k)}$ must exhibit non-analytic dependence on λ, e.g. $\sqrt{k^{2}}$ with $k^{2}=\lambda^{2}$

soft radiation at next-to-soft approximation

$$
d \sigma=d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2} \times \mathcal{O}_{\mathcal{O}(k)}
$$

- $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)}$: phase-space
- $|\mathcal{M}|_{\mathcal{O}(k)}^{2}$: matrix element squared
- $\mathcal{O}_{\mathcal{O}(k)}$: observable
- total cross-sections and kinematic distribution of colorless particles
- no linear λ-dependence from d Lips $_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2}$
\rightarrow absence of linear power corrections
- only source of linear λ-dependence comes from $\mathcal{O}_{\mathcal{O}(k)}$
- condition: $\mathcal{O}_{\mathcal{O}(k)}$ must exhibit non-analytic dependence on λ, e.g. $\sqrt{k^{2}}$ with $k^{2}=\lambda^{2}$
- event shape observables (C-parameter, etc.) have non-analytic λ-dependence

soft radiation at next-to-soft approximation

$$
d \sigma=d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2} \times \mathcal{O}_{\mathcal{O}(k)}
$$

- $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)}$: phase-space
- $|\mathcal{M}|_{\mathcal{O}(k)}^{2}$: matrix element squared
- $\mathcal{O}_{\mathcal{O}(k)}$: observable
- total cross-sections and kinematic distribution of colorless particles
- no linear λ-dependence from $d \operatorname{Lips}_{\mathcal{O}(\lambda, k)} \times|\mathcal{M}|_{\mathcal{O}(k)}^{2}$
\rightarrow absence of linear power corrections
- only source of linear λ-dependence comes from $\mathcal{O}_{\mathcal{O}(k)}$
- condition: $\mathcal{O}_{\mathcal{O}(k)}$ must exhibit non-analytic dependence on λ, e.g. $\sqrt{k^{2}}$ with $k^{2}=\lambda^{2}$
- event shape observables (C-parameter, etc.) have non-analytic λ-dependence \rightarrow presence of linear power corrections

linear power corrections

event shape variables are sensitive to number of final-state particles

linear power corrections

event shape variables are sensitive to number of final-state particles
\rightarrow include $g^{*}(k) \rightarrow q(I) \bar{q}(\bar{l})$ splitting

linear power corrections

event shape variables are sensitive to number of final-state particles
\rightarrow include $g^{*}(k) \rightarrow q(I) \bar{q}(\bar{l})$ splitting

- can factorise out phase-space of soft partons q, \bar{q}

linear power corrections

event shape variables are sensitive to number of final-state particles
\rightarrow include $g^{*}(k) \rightarrow q(I) \bar{q}(\bar{l})$ splitting

- can factorise out phase-space of soft partons q, \bar{q}
\rightarrow leads to master equation:

$$
\begin{align*}
I_{C}(\{\tilde{p}, \lambda\})= & \int[d k] \frac{J^{\mu} J^{\nu}}{\lambda^{2}} \theta\left(\omega_{\max }-\frac{(k \cdot q)}{\sqrt{q^{2}}}\right) \int[d l][d \bar{l}](2 \pi)^{4} \delta^{(4)}(k-I-\bar{\jmath}) \tag{5}\\
& \times \operatorname{Tr}\left[\hat{\gamma^{\mu}}{ }^{\mu} \hat{\bar{I}} \gamma^{\nu}\right][C(\{\tilde{p}\}, I, \bar{l})-C(\{\tilde{p}\})]
\end{align*}
$$

linear power corrections: master equation

$$
\begin{align*}
I_{C}(\{\tilde{p}, \lambda\})= & \int[d k] \frac{J^{\mu} J^{\nu}}{\lambda^{2}} \theta\left(\omega_{\max }-\frac{(k \cdot q)}{\sqrt{q^{2}}}\right) \int[d I][d \bar{l}](2 \pi)^{4} \delta^{(4)}(k-I-\bar{l}) \tag{6}\\
& \times \operatorname{Tr}\left[\hat{l} \gamma^{\mu} \hat{\bar{\gamma}} \gamma^{\nu}\right][C(\{\tilde{p}\}, I, \bar{l})-C(\{\tilde{p}\})]
\end{align*}
$$

- current J^{μ} is defined as

$$
\begin{equation*}
J^{\mu}=\frac{p_{1}^{\mu}}{p_{1} \cdot k}-\frac{p_{2}^{\mu}}{p_{2} \cdot k} \tag{7}
\end{equation*}
$$

linear power corrections: master equation

$$
\begin{align*}
I_{C}(\{\tilde{p}, \lambda\})= & \int[d k] \frac{J^{\mu} J^{\nu}}{\lambda^{2}} \theta\left(\omega_{\max }-\frac{(k \cdot q)}{\sqrt{q^{2}}}\right) \int[d I][d \bar{l}](2 \pi)^{4} \delta^{(4)}(k-I-\bar{l}) \tag{6}\\
& \times \operatorname{Tr}\left[\hat{l} \gamma^{\mu} \hat{\bar{\gamma}} \gamma^{\nu}\right][C(\{\tilde{p}\}, I, \bar{l})-C(\{\tilde{p}\})]
\end{align*}
$$

- current J^{μ} is defined as

$$
\begin{equation*}
J^{\mu}=\frac{p_{1}^{\mu}}{p_{1} \cdot k}-\frac{p_{2}^{\mu}}{p_{2} \cdot k} \tag{7}
\end{equation*}
$$

- shift in C-parameter is given by

$$
\begin{equation*}
\Delta C=C(\{\tilde{p}\}, l, \bar{l})-C(\{\tilde{p}\})=\sum_{i=1}^{3} \frac{\left(\tilde{p}_{i} \cdot l\right)^{2}}{\left(\tilde{p}_{i} \cdot q\right)(l \cdot q)}+(l \rightarrow \bar{l}) \tag{8}
\end{equation*}
$$

linear power corrections

- integrate out quark and gluon momenta in rest frame of decaying particle

linear power corrections

- integrate out quark and gluon momenta in rest frame of decaying particle - \rightarrow one-dimensional integral over energy/velocity remaining:

linear power corrections

- integrate out quark and gluon momenta in rest frame of decaying particle - \rightarrow one-dimensional integral over energy/velocity remaining:

$$
\begin{equation*}
I_{C}\left(p_{1}, p_{2}, p_{3}, \lambda\right)=-\frac{3 \lambda}{4 \pi^{3} q} \sum_{i=1}^{5} \int_{0}^{\beta_{\max }} d \beta G_{i}(\beta, x, y) \tag{9}
\end{equation*}
$$

linear power corrections

$$
\begin{aligned}
G_{5} & =\frac{\sqrt{1-\beta^{2}} \ln \left(\frac{1+\beta}{1-\beta}\right) \ln \left(\frac{\sqrt{1-\beta^{2} c_{12}^{2}}+\beta s_{12}}{\sqrt{1-\beta^{2} c_{12}^{2}-\beta s_{12}}}\right)}{64 \beta^{8} s_{12} x(x(y-1)+1)(x y-1) \sqrt{1-\beta^{2} c_{12}^{2}}} \\
& \times\left(\beta^{6} x\left[x^{2}(y-1) y+x\left(-4 y^{2}+4 y-5\right)+5\right]+\beta^{4}\left[x^{2}\left(54 y^{2}-54 y-17\right)\right.\right. \\
& \left.-21 x^{3}(y-1) y+55 x-38\right]+5 \beta^{2}\left[x^{2}\left(-24 y^{2}+24 y+5\right)\right. \\
& \left.\left.+11 x^{3}(y-1) y-17 x+12\right]-35(x-2)\left(x^{2}(y-1) y+x-1\right)\right) .
\end{aligned}
$$

- integrate out quark and gluon momenta in rest frame of decaying particle - \rightarrow one-dimensional integral over energy/velocity remaining:

$$
\begin{equation*}
I_{C}\left(p_{1}, p_{2}, p_{3}, \lambda\right)=-\frac{3 \lambda}{4 \pi^{3} q} \sum_{i=1}^{5} \int_{0}^{\beta_{\max }} d \beta G_{i}(\beta, x, y) \tag{9}
\end{equation*}
$$

linear power corrections

$$
\begin{aligned}
G_{5} & =\frac{\sqrt{1-\beta^{2}} \ln \left(\frac{1+\beta}{1-\beta}\right) \ln \left(\frac{\sqrt{1-\beta^{2} c_{12}^{2}}+\beta s_{12}}{\sqrt{1-\beta^{2} c_{12}^{2}}-\beta s_{12}}\right)}{64 \beta^{8} s_{12} x(x(y-1)+1)(x y-1) \sqrt{1-\beta^{2} c_{12}^{2}}} \\
& \times\left(\beta^{6} x\left[x^{2}(y-1) y+x\left(-4 y^{2}+4 y-5\right)+5\right]+\beta^{4}\left[x^{2}\left(54 y^{2}-54 y-17\right)\right.\right. \\
& \left.-21 x^{3}(y-1) y+55 x-38\right]+5 \beta^{2}\left[x^{2}\left(-24 y^{2}+24 y+5\right)\right. \\
& \left.\left.+11 x^{3}(y-1) y-17 x+12\right]-35(x-2)\left(x^{2}(y-1) y+x-1\right)\right) .
\end{aligned}
$$

- integrate out quark and gluon momenta in rest frame of decaying particle
- \rightarrow one-dimensional integral over energy/velocity remaining:

$$
\begin{equation*}
I_{C}\left(p_{1}, p_{2}, p_{3}, \lambda\right)=-\frac{3 \lambda}{4 \pi^{3} q} \sum_{i=1}^{5} \int_{0}^{\beta_{\max }} d \beta G_{i}(\beta, x, y) \tag{9}
\end{equation*}
$$

\rightarrow require class of elliptic multiple polylogarithms (eMPLs)

linear power corrections

- performing analytic integration leads to long expressions

linear power corrections

```
\(I_{1}=-\frac{\omega_{\max }}{\lambda} \frac{2(x-1)\left(3 x^{2}(y-1) y+x\left(-4 y^{2}+4 y+1\right)-1\right)}{3(x(y-1)+1)^{2}(x y-1)^{2}}\)
    \(\begin{array}{cc}\lambda & \frac{3(x(y-1)+1)^{2}(x y-1)^{2}}{\beta_{\min }^{5}} \frac{7}{16(x(y-1)+1)^{2}(x y-1)^{2}}\left[x^{4}(y-1)^{2} y^{2}-2 x^{3} y\left(y^{3}-2 y^{2}+5 y-4\right)\right.\end{array}\)
    \(\left.+3 x^{2}\left(6 y^{2}-6 y-1\right)+x\left(-10 y^{2}+10 y+6\right)-3\right]\)
    \(+\frac{1}{\beta_{\min }^{3}} \frac{5}{288(x(y-1)+1)^{2}(x y-1)^{2}}\left[31 x^{4}(y-1)^{2} y^{2}+2 x^{3} y\left(-37 y^{3}+74 y^{2}\right.\right.\)
    \(\left.-227 y+190)+141 x^{2}\left(6 y^{2}-6 y-1\right)+x\left(-466 y^{2}+466 y+282\right)-141\right]\)
    \(\frac{1}{\beta_{\min }} \frac{1}{384(x(y-1)+1)^{2}(x y-1)^{2}}\left[27 x^{4}(y-1)^{2} y^{2}+2 x^{3} y\left(-71 y^{3}+142 y^{2}\right.\right.\)
    \(-1239 y+1168)+x^{2}\left(5286 y^{2}-5286 y-817\right)\)
    \(\left.+x\left(-2950 y^{2}+2950 y+1634\right)-817\right]\),
\(I_{2}=\frac{1}{\beta_{\min }^{5}} \frac{7(x-1)\left(5 x^{3}(y-1) y+x^{2}\left(-7 y^{2}+7 y+2\right)-3 x+1\right)}{8 x(x(y-1)+1)^{2}(x y-1)^{2}}\)
    \(-15\left((x-1)\left(217 x^{3}(y-1) y+x^{2}\left(-299 y^{2}+299 y+82\right)-111 x+29\right)\right)\)
    \(\frac{1}{\beta_{\min }^{3}} 144(x(x)(y-1)+1)^{2}(x y-1)^{2}\)
    \(+\frac{1}{\beta_{\min }} \frac{(x-1)\left(4121 x^{3}\left(y^{2}-y\right)-x^{2}\left(5875\left(y^{2}-y\right)-1754\right)-2805 x+1141\right)}{576 x(x(y-1)+1)^{2}(x y-1)^{2}}\) (B7
    \(-\frac{\pi^{2}(x-1)\left(85 x^{3}(y-1) y+x^{2}\left(-127 y^{2}+127 y+42\right)-83 x+41\right)}{256\left(x(x(y-1)+1)^{2}(x y-1)^{2}\right)}\),
\(I_{4}=\frac{1}{\beta_{\min }^{5}} \frac{7}{16 x(x(y-1)+1)^{2}(x y-1)^{2}}\left[x^{5}(y-1)^{2} y^{2}-2 x^{4} y\left(y^{3}-2 y^{2}+10 y-9\right)\right.\)
    \(\left.+7 x^{3}\left(6 y^{2}-6 y-1\right)-8 x^{2}\left(3 y^{2}-3 y-2\right)-11 x+2\right]\)
    \(-\frac{1}{\beta_{\min }^{3}} \frac{5}{288\left(x x(x(y-1)+1)^{2}(x y-1)^{2}\right)}\left[31 x^{5}(y-1)^{2} y^{2}-74 x^{4} y\left(y^{2}(y-2)\right.\right.\)
    \(\left.+12 y-11)+x^{3}\left(1878\left(y^{2}-y\right)-305\right)-x^{2}\left(1064\left(y^{2}-y\right)-668\right)-421 x+58\right]\)
    \(+\frac{1}{\beta_{\min }} \frac{1}{1152 x(x)(y-1)+1)^{2}(x y-1)^{2}}\left[81 x^{5}(y-1)^{2} y^{2}-2 x^{4} y\left(213 y^{2}(y-2) \quad\right.\right.\) (B. 8
    \(+7838 y-7625)+x^{3}\left(35850\left(y^{2}-y\right)-5959\right)-200 x^{2}\left(103\left(y^{2}-y\right)-71\right)\)
    \(-10523 x+2282\) ]
    \(+\frac{w_{\max }}{} \frac{4(1-x)\left(\left(2 x^{3}-3 x^{2}\right)\left(y^{2}-y\right)+(1-x)^{2}\right)\left(\log \frac{\lambda}{2 u_{\max }}+1\right)}{}\)(B. 6
\(I_{5}=-\frac{1}{\beta_{\min }^{5}} \frac{7(x-2)}{16 x}+\frac{1}{\beta_{\min }^{3}} \frac{5\left(31 x^{3}(y-1) y+x^{2}\left(-74 y^{2}+74 y+23\right)-81 x+58\right)}{288 x(x(y-1)+1)(x y-1)}\)
\(+\frac{1}{\beta_{\text {min }}} \frac{1}{1152 x(x(y-1)+1)^{2}(x y-1)^{2}}\left[-81 x^{5}(y-1)^{2} y^{2}+2 x^{4} y\left(213 y^{3}-426 y^{2}\right.\right.\)
\(-404 y+617)+x^{3}\left(4134 y^{2}-4134 y-1057\right)+x^{2}\left(-2900 y^{2}+2900 y+4396\right)\)
\(-5621 x+2282]-\frac{\pi^{2}(x-1)^{2}}{1024 s_{12} x(x(y-1)+1)^{3}(x y-1)^{3}} \times\)
\(\times\left(160 x^{4}(y-1)^{2} y^{2}+192 x^{3}(y-1) y+x^{2}\left(-68 y^{2}+68 y+37\right)+45 x-82\right)\)
\(+\frac{1}{1024 x(x y-1)^{2}(x y-x+1)^{2}}\left[3 x^{5} y^{4}-6 x^{5} y^{3}+3 x^{5} y^{2}-2 x^{4} y^{4}+4 x^{4} y^{3}-196 x^{4} y^{2}\right.\)
\(\left.+194 x^{4} y+430 x^{3} y^{2}-430 x^{3} y-37 x^{3}-236 x^{2} y^{2}+236 x^{2} y-8 x^{2}+127 x-82\right] \times\)
\(\times\left[-4 \mathrm{E}_{1}\left(\begin{array}{cc}-1 \\ 0 & \left.\frac{1}{1}+\frac{41212}{1-42} ; 1, \vec{q}\right)\end{array}\right)+4 \mathrm{E}_{1}\left(\begin{array}{cc}-1 & 1 \\ 0 & \frac{1}{-1+1212}\end{array} ; 1, \vec{q}\right)-4 \mathrm{G}\left(0, \frac{s_{12}+1}{1-s_{12}} ; 1\right)\right.\)
\(\left.+4 \mathrm{G}\left(0, \frac{s_{12}+1}{s_{12}-1} ; 1\right)+\pi^{2}\right]+\mathrm{E}_{1}(0 ; 1, \vec{q})\left[\frac{5 \pi^{2}(x-1)^{2}\left(x^{2}(y-1) y+1\right)}{8 s_{12} x(x[y-1)+1)^{2}(x y-1)^{2}} \frac{\eta_{1}}{\omega_{1}}\right.\)
\(\left.+\frac{5 \pi^{2}(x-1)^{2}\left(2 x^{4}(y-1)^{2} y^{2}+7 x^{3}(y-1) y+x^{2}\left(-8 y^{2}+8 y+3\right)-5 x+2\right)}{96 s_{12} x(x(y-1)+1)^{3}(x y-1)^{3}}\right]\)
\(+\left(\frac{5(x-1)^{2}\left(x^{2}(y-1) y+1\right)}{8 s_{12} x(x(y-1)+1)^{2}(x y-1)^{2}}+\frac{5(x-1)^{2}\left(x^{2}(y-1) y+1\right)}{8 x(x(y-1)+1)^{2}(x y-1)^{2}}\right) \mathrm{E}_{4}\left(\begin{array}{c}-1 \\ \infty \\ \infty=\frac{1}{1-112}\end{array} ; 1, \vec{q}\right)\)
\(+\left(-\frac{5(x-1)^{2}\left(x^{2}(y-1) y+1\right)}{8_{12} x(x(y-1)+1)^{2}(x y-1)^{2}}-\frac{5(x-1)^{2}\left(x^{2}(y-1) y+1\right)}{8 x(x(y-1)+1)^{2}(x y-1)^{2}}\right) \times\)
\(\times \mathrm{E}_{4}\left(\begin{array}{c}-1 \\ \infty \\ \infty \\ \frac{y}{121+1}\end{array} 1, \vec{q}\right)+\left(\frac{5(x-1)^{2}\left(x^{2}\{y-1) y+1\right)}{8 s_{12} x(x(y-1)+1)^{2}(x y-1)^{2}}\right.\)
\(\left.+\frac{-3 x^{3}(y-1) y+x^{2}\left(2 y^{2}-2 y+37\right)-115 x+78}{256 x(x(y-1)+1)(x y-1)}\right) \mathrm{E}_{4}\left({ }_{\infty}^{-1}-1 ; 1, \vec{q}\right)\)
\(+\mathrm{E}_{4}\left(\begin{array}{c}-1 \\ \infty\end{array} \frac{1}{1} ; 1, \vec{q}\right)\left(\frac{3 x^{3}(y-1) y+x^{2}\left(-2 y^{2}+2 y-37\right)+115 x-78}{256 x(x(y-1)+1)(x y-1)}\right.\)
(B.14)
\(\left.-\overline{8 s_{12} x(x(y-1)+1)^{2}(x y-1)^{2}}\right)+\frac{5\left(s_{12} x(x y-1)^{2}(x y-x+1)^{2}\right.}{16}\)
```



```
\(-\mathrm{E}_{4}\left(\frac{2_{1}^{2}+1}{2_{12}-1} \frac{n_{1}^{2}+1}{122-1} ; 1, \vec{q}\right)+\mathrm{E}_{4}\left({ }_{-1}^{2}-1 ; 1, \vec{q}\right)-\mathrm{E}_{4}(\underset{-1}{2} 1 ; 1, \vec{q})-\mathrm{E}_{4}\left({ }_{1}^{2}-1 ; 1, \vec{q}\right)\)
```

${ }_{3}=\frac{1}{\beta_{\text {min }}^{5}} \frac{7(x-2)}{16 x}-\frac{1}{\beta_{\text {min }}^{3}} \frac{5\left(31 x^{3} y^{2}-31 x^{3} y-74 x^{2} y^{2}+74 x^{2} y+23 x^{2}-81 x+58\right)}{288(x(x y-1)(x y-x+1))}$
$+\frac{1}{\beta_{\text {min }}} \frac{1}{1152 x(x(y-1)+1)^{2}(x y-1)^{2}}\left[81 x^{5}(y-1)^{2} y^{2}+2 x^{4} y\left(-213 y^{3}+426 y^{2}\right.\right.$
$+404 y-617)+x^{3}\left(-4134 y^{2}+4134 y+1057\right)+4 x^{2}\left(725 y^{2}-725 y-1099\right)$
$+5621 x-2282]+\frac{w_{\max }}{\lambda} \frac{4}{3 x}\left[\log s_{12}-\log \frac{\lambda}{2 w_{\text {max }}}-1\right]$
$+\frac{(x-1)^{2}}{512 s_{12} x(x y-1)^{3}(x y-x+1)^{3}}\left(160 x^{4} y^{4}-320 x^{4} y^{3}+160 x^{4} y^{2}+102 x^{3} y^{2}\right.$

$$
\left.-192 x^{3} y-68 x^{2} y^{2}+68 x^{2} y+37 x^{2}+45 x-82\right)\left\{\frac{\pi^{2}}{4}+\mathrm{G}\left(0, \frac{s_{12}+1}{1-s_{12}}, 1\right)\right.
$$

$-\mathrm{G}\left(0, \frac{s_{12}+1}{s_{12}-1}, 1\right)+\mathrm{E}_{4}\left(\begin{array}{cc}-1 & 1 \\ \infty & \frac{12+1}{12}+12\end{array} ; 1, \vec{q}\right)-\mathrm{E}_{4}\left(\begin{array}{cc}-1 & 1 \\ \infty & \frac{312+1}{12-1} ; 1, \vec{q}\end{array}\right)$
$+\mathrm{E}_{4}\left(\begin{array}{cc}-1 & \frac{1}{2} \\ 0 & \frac{12+1}{1-12}\end{array} 1, \vec{q}\right)-\mathrm{E}_{4}\left(\begin{array}{cc}-1 & \frac{1}{2} ; \\ 0 & \frac{12}{122-1}\end{array} 1, \vec{q}\right)+\mathrm{E}_{4}\left(\begin{array}{cc}-1 & 1 \\ \infty & -1\end{array} 1, \vec{q}\right)$

linear power corrections

- performing analytic integration leads to long expressions
- after some non-trivial simplifications and several intermediate steps

linear power corrections

- performing analytic integration leads to long expressions
- after some non-trivial simplifications and several intermediate steps
\rightarrow we obtain a remarkable simple and compact result:

linear power corrections

- performing analytic integration leads to long expressions
- after some non-trivial simplifications and several intermediate steps
\rightarrow we obtain a remarkable simple and compact result:

$$
\begin{equation*}
\mathcal{T}_{\lambda}\left[I_{C}\right]=\frac{15}{128 \pi} \frac{s_{12}^{3}}{1-z_{3}}\left(\frac{\lambda}{q}\right)\left[\frac{\left(1+z_{3}\right)}{2} K\left(c_{12}^{2}\right)-\left(1-z_{1} z_{2}\right) E\left(c_{12}^{2}\right)\right] \tag{10}
\end{equation*}
$$

linear power corrections

- performing analytic integration leads to long expressions
- after some non-trivial simplifications and several intermediate steps
\rightarrow we obtain a remarkable simple and compact result:

$$
\begin{equation*}
\mathcal{T}_{\lambda}\left[I_{C}\right]=\frac{15}{128 \pi} \frac{s_{12}^{3}}{1-z_{3}}\left(\frac{\lambda}{q}\right)\left[\frac{\left(1+z_{3}\right)}{2} K\left(c_{12}^{2}\right)-\left(1-z_{1} z_{2}\right) E\left(c_{12}^{2}\right)\right] \tag{10}
\end{equation*}
$$

\rightarrow simplicity of result calls for an explanation and suggests deeper structure

Part III

Factorisation of linear power corrections

Factorisation

$$
\begin{align*}
I_{C}(\{\tilde{p}, \lambda\})= & \int[d k] \frac{J^{\mu} J^{\nu}}{\lambda^{2}} \theta\left(\omega_{\max }-\frac{(k \cdot q)}{\sqrt{q^{2}}}\right) \int[d /][d \bar{l}](2 \pi)^{4} \delta^{(4)}(k-I-\bar{l}) \tag{11}\\
& \times \operatorname{Tr}\left[\hat{l} \gamma^{\mu} \hat{\bar{I}} \gamma^{\nu}\right][C(\{\tilde{p}\}, I, \bar{I})-C(\{\tilde{p}\})]
\end{align*}
$$

- we need to approach the computation in a different manner

Factorisation

$$
\begin{align*}
I_{C}(\{\tilde{p}, \lambda\})= & \int[d k] \frac{J^{\mu} J^{\nu}}{\lambda^{2}} \theta\left(\omega_{\max }-\frac{(k \cdot q)}{\sqrt{q^{2}}}\right) \int[d /][d \bar{l}](2 \pi)^{4} \delta^{(4)}(k-I-\bar{l}) \tag{11}\\
& \times \operatorname{Tr}\left[\hat{l} \gamma^{\mu} \hat{\bar{I}} \gamma^{\nu}\right][C(\{\tilde{p}\}, I, \bar{I})-C(\{\tilde{p}\})]
\end{align*}
$$

- we need to approach the computation in a different manner
- result should be independent of choice of regulator

Factorisation

$$
\begin{align*}
& \times \operatorname{Tr}\left[\hat{\gamma}^{\mu} \hat{\bar{\gamma}}^{\nu}\right][C(\{\tilde{p}\}, I, T)-C(\{\tilde{p}\})] \tag{11}
\end{align*}
$$

- we need to approach the computation in a different manner
- result should be independent of choice of regulator

Factorisation

$$
\begin{align*}
I_{C}(\{\tilde{p}, \lambda\})= & \int[d k] \frac{J^{\mu} J^{\nu}}{\lambda^{2}} \hat{\theta}\left(\omega_{\text {max }} \frac{(k-q)}{\sqrt{q^{2}}}\right) \int[d \mid][d \bar{l}](2 \pi)^{4} \delta^{(4)}(k-I-\bar{l}) \tag{11}\\
& \times \operatorname{Tr}\left[\hat{l} \gamma^{\mu} \hat{I} \gamma^{\nu}\right][C(\{\tilde{p}\}, I, \bar{l})-C(\{\tilde{p}\})]
\end{align*}
$$

- we need to approach the computation in a different manner
- result should be independent of choice of regulator
- change order of integration and integrate out momentum of quark transverse to radiating dipole plane p_{1}, p_{2}

Factorisation

$$
\begin{align*}
I_{C}(\{\tilde{p}, \lambda\})= & \int[d k] \frac{J^{\mu} J^{\nu}}{\lambda^{2}} \theta\left(\omega_{\text {max }} \frac{(k \cdot q)}{\sqrt{q^{2}}}\right) \int[d \mid][d \bar{l}](2 \pi)^{4} \delta^{(4)}(k-I-\bar{l}) \tag{11}\\
& \times \operatorname{Tr}\left[\hat{\rho^{\mu}} \hat{I}^{\mu} \gamma^{\nu}\right][C(\{\tilde{p}\}, I, \bar{l})-C(\{\tilde{p}\})]
\end{align*}
$$

- we need to approach the computation in a different manner
- result should be independent of choice of regulator
- change order of integration and integrate out momentum of quark transverse to radiating dipole plane p_{1}, p_{2}
\longrightarrow

$$
\begin{equation*}
I_{C}(\{\tilde{p}, \lambda\})=W_{C} \times \lambda F\left(p_{1}, p_{2}, \tilde{l}\right) \tag{12}
\end{equation*}
$$

The universal factor

$$
\begin{equation*}
I_{C}(\{\tilde{p}, \lambda\})=W_{C} \times \lambda F\left(p_{1}, p_{2}, \tilde{l}\right) \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
W_{C}=-3 \int \frac{d \eta d \phi}{2(2 \pi)^{3}} \tilde{C}_{\alpha \beta} \frac{\tilde{l}^{\alpha} \tilde{l}^{\beta}}{(I \cdot \tilde{I} q)} \text { with } \tilde{C}_{\alpha \beta}=\sum_{i=1}^{3} \frac{p_{i}^{\alpha} p_{i}^{\beta}}{\left(p_{i} \cdot q\right)} \tag{14}\\
F\left(p_{1}, p_{2}, \tilde{l}\right)=16 \pi \int[d k] \frac{J_{\mu} J_{\nu}}{\lambda^{3}}\left\{-2 \tilde{I}^{\mu} \tilde{I}^{\nu} \frac{\lambda^{8}}{(2 k \cdot \tilde{l})^{5}}-\frac{g^{\mu \nu} \lambda^{6}}{2(2 k \cdot \tilde{l})^{3}}\right\} \tag{15}
\end{gather*}
$$

The universal factor

$$
\begin{gather*}
I_{C}(\{\tilde{p}, \lambda\})=W_{C} \times \lambda F\left(p_{1}, p_{2}, \tilde{l}\right) \tag{13}\\
W_{C}=-3 \int \frac{d \eta d \phi}{2(2 \pi)^{3}} \tilde{C}_{\alpha \beta} \frac{\tilde{\tilde{q}}_{\alpha} \tilde{\tilde{\beta}}^{\beta}}{(I \cdot q)} \text { with } \tilde{C}_{\alpha \beta}=\sum_{i=1}^{3} \frac{p_{i}^{\alpha} p_{i}^{\beta}}{\left(p_{i} \cdot q\right)} \tag{14}\\
F\left(p_{1}, p_{2}, \tilde{l}\right)=16 \pi \int[d k] \frac{J_{\mu} J_{\nu}}{\lambda^{3}}\left\{-2 \tilde{\mu} \tilde{I^{\nu}} \frac{\lambda^{8}}{\left(2 k \cdot \tilde{l}^{5}\right.}-\frac{g^{\mu \nu} \lambda^{6}}{2\left(2 k \cdot \tilde{l}^{3}\right.}\right\} \tag{15}
\end{gather*}
$$

The universal factor

$$
\begin{equation*}
I_{C}(\{\tilde{p}, \lambda\})=W_{C} \times \lambda F\left(p_{1}, p_{2}, \tilde{l}\right) \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
W_{C}=-3 \int \frac{d \eta d \phi}{2(2 \pi)^{3}} \tilde{C}_{\alpha \beta} \frac{\tilde{\mathcal{L}}_{\alpha} \tilde{\eta}^{\beta}}{(I \cdot q)} \text { with } \tilde{C}_{\alpha \beta}=\sum_{i=1}^{3} \frac{p_{i}^{\alpha} p_{i}^{\beta}}{\left(p_{i} \cdot q\right)} \tag{14}\\
F\left(p_{1}, p_{2}, \tilde{l}\right)=16 \pi \int[d k] \frac{J_{\mu} J_{\nu}}{\lambda^{3}}\left\{-2 \tilde{\mu} \tilde{\mu}^{\nu} \tilde{\lambda^{\nu}} \frac{\lambda^{8}}{\left(2 k \cdot \tilde{)^{5}}\right.}-\frac{g^{\mu \nu} \lambda^{6}}{2\left(2 k \cdot \tilde{)^{3}}\right.}\right\} \tag{15}
\end{gather*}
$$

- the function F is completely independent of

The universal factor

$$
\begin{equation*}
I_{C}(\{\tilde{p}, \lambda\})=W_{C} \times \lambda F\left(p_{1}, p_{2}, \tilde{l}\right) \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
W_{C}=-3 \int \frac{d \eta d \phi}{2(2 \pi)^{3}} \tilde{C}_{\alpha \beta} \frac{\tilde{\mathcal{L}_{\alpha}} \tilde{\eta}^{\beta}}{(I \cdot q)} \text { with } \tilde{C}_{\alpha \beta}=\sum_{i=1}^{3} \frac{p_{i}^{\alpha} p_{i}^{\beta}}{\left(p_{i} \cdot q\right)} \tag{14}\\
F\left(p_{1}, p_{2}, \tilde{l}\right)=16 \pi \int[d k] \frac{J_{\mu} J_{\nu}}{\lambda^{3}}\left\{-2 \tilde{\mu}^{\mu} \tilde{I^{\nu}} \frac{\lambda^{8}}{\left(2 k \cdot \tilde{)^{5}}\right.}-\frac{g^{\mu \nu} \lambda^{6}}{2\left(2 k \cdot \tilde{)^{3}}\right.}\right\} \tag{15}
\end{gather*}
$$

- the function F is completely independent of
- observable

The universal factor

$$
\begin{equation*}
I_{C}(\{\tilde{p}, \lambda\})=W_{C} \times \lambda F\left(p_{1}, p_{2}, \tilde{l}\right) \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
W_{C}=-3 \int \frac{d \eta d \phi}{2(2 \pi)^{3}} \tilde{C}_{\alpha \beta} \frac{\tilde{l}_{\alpha}^{\alpha} \tilde{\eta}^{\beta}}{(I \cdot q)} \text { with } \tilde{C}_{\alpha \beta}=\sum_{i=1}^{3} \frac{p_{i}^{\alpha} p_{i}^{\beta}}{\left(p_{i} \cdot q\right)} \tag{14}\\
F\left(p_{1}, p_{2}, \tilde{l}\right)=16 \pi \int[d k] \frac{J_{\mu} J_{\nu}}{\lambda^{3}}\left\{-2 \tilde{I}^{\mu} \tilde{l}^{\nu} \frac{\lambda^{8}}{(2 k \cdot \tilde{l})^{5}}-\frac{g^{\mu \nu} \lambda^{6}}{2(2 k \cdot \tilde{l})^{3}}\right\} \tag{15}
\end{gather*}
$$

- the function F is completely independent of
- observable
- kinematics of radiating dipole

The universal factor

$$
\begin{equation*}
I_{C}(\{\tilde{p}, \lambda\})=W_{C} \times \lambda F\left(p_{1}, p_{2}, \tilde{l}\right) \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& W_{C}=-3 \int \frac{d \eta d \phi}{2(2 \pi)^{3}} \tilde{C}_{\alpha \beta} \frac{\tilde{\rho}_{\alpha} \tilde{\beta}^{\beta}}{(1 \cdot q)} \text { with } \tilde{C}_{\alpha \beta}=\sum_{i=1}^{3} \frac{p_{i}^{\alpha} p_{i}^{\beta}}{\left(p_{i} \cdot q\right)} \tag{14}\\
& \text { valuates to } \rightarrow \quad F=-\frac{5 \pi}{64} \tag{15}
\end{align*}
$$

- the function F is completely independent of
- observable
- kinematics of radiating dipole

The universal factor

$$
\begin{equation*}
I_{C}(\{\tilde{p}, \lambda\})=W_{C} \times \lambda F\left(p_{1}, p_{2}, \tilde{I}\right) \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& \qquad W_{C}=-3 \int \frac{d \eta d \phi}{2(2 \pi)^{3}} \tilde{C}_{\alpha \beta} \frac{\tilde{\rho}_{\alpha} \tilde{\beta} \beta}{(1 \cdot q)} \text { with } \tilde{C}_{\alpha \beta}=\sum_{i=1}^{3} \frac{p_{i}^{\alpha} p_{i}^{\beta}}{\left(p_{i} \cdot q\right)} \tag{14}\\
& \text { evaluates to } \rightarrow \quad F=-\frac{5 \pi}{64} \tag{15}
\end{align*}
$$

- the function F is completely independent of
- observable
- kinematics of radiating dipole
- same universal factor appears for different observables in arbitrary N-jet kinematics!

The universal factor

$$
\begin{equation*}
I_{C}(\{\tilde{p}, \lambda\})=W_{C} \times \lambda F\left(p_{1}, p_{2}, \tilde{l}\right) \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& \qquad W_{C}=-3 \int \frac{d \eta d \phi}{2(2 \pi)^{3}} \tilde{C}_{\alpha \beta} \frac{\tilde{\alpha_{\alpha}} \tilde{\mathcal{T}}_{\beta}}{(1 \cdot q)} \text { with } \tilde{C}_{\alpha \beta}=\sum_{i=1}^{3} \frac{p_{i}^{\alpha} p_{i}^{\beta}}{\left(p_{i} \cdot q\right)} \tag{14}\\
& \text { evaluates to } \rightarrow \quad F=-\frac{5 \pi}{64} \tag{15}
\end{align*}
$$

- the function F is completely independent of
- observable
- kinematics of radiating dipole
- same universal factor appears for different observables in arbitrary N-jet kinematics!
- rigorous derivation and generalisation of similar factor known from 2-jet limit (so-called Milan factor) [Y. Dokshitzer, A. Lucenti, G. Marchesini, G. Salam, JHEP 05 (1998) 003] and many more

Event shapes: Thrust

- similarly can compute other observables with factorised formula and can generalise factorisation to N-jet kinematics (4-jet, 5 -jet, ...)

Event shapes: Thrust

- similarly can compute other observables with factorised formula and can generalise factorisation to N-jet kinematics (4-jet, 5 -jet, ...)
- now compute linear power corrections to thrust T

Event shapes: Thrust

- similarly can compute other observables with factorised formula and can generalise factorisation to N-jet kinematics (4-jet, 5 -jet, ...)
- now compute linear power corrections to thrust T

$$
\begin{equation*}
T=\max _{\vec{n}} \sum_{i} \frac{\left|\vec{n} \cdot \vec{p}_{i}\right|}{q} \tag{16}
\end{equation*}
$$

Event shapes: Thrust

- similarly can compute other observables with factorised formula and can generalise factorisation to N-jet kinematics (4-jet, 5 -jet, ...)
- now compute linear power corrections to thrust T

$$
\begin{equation*}
T=\max _{\vec{n}} \sum_{i} \frac{\left|\vec{n} \cdot \vec{p}_{i}\right|}{q} \tag{16}
\end{equation*}
$$

- need to compute observable-dependent part W_{T} :

Event shapes: Thrust

- similarly can compute other observables with factorised formula and can generalise factorisation to N-jet kinematics (4-jet, 5 -jet, ...)
- now compute linear power corrections to thrust T

$$
\begin{equation*}
T=\max _{\vec{n}} \sum_{i} \frac{\left|\vec{n} \cdot \vec{p}_{i}\right|}{q} \tag{16}
\end{equation*}
$$

- need to compute observable-dependent part W_{T} :

$$
\begin{equation*}
W_{T}=\frac{1}{q} \int \frac{d \eta d \phi}{2(2 \pi)^{3}}\left|\vec{n}_{m} \cdot \overrightarrow{\tilde{l}}\right| \tag{17}
\end{equation*}
$$

Event shapes: Thrust

- similarly can compute other observables with factorised formula and can generalise factorisation to N-jet kinematics (4-jet, 5 -jet, ...)
- now compute linear power corrections to thrust T

$$
\begin{equation*}
T=\max _{\vec{n}} \sum_{i} \frac{\left|\vec{n} \cdot \vec{p}_{i}\right|}{q} \tag{16}
\end{equation*}
$$

- need to compute observable-dependent part W_{T} :

$$
W_{T}= \begin{cases}-\frac{1}{2 \pi^{3} q}\left[2 E\left(n_{\mathrm{m}, t}^{2}\right)-K\left(n_{\mathrm{m}, t}^{2}\right)\right] & \text { if } \min \left(z_{1}, z_{2}, z_{3}\right) \neq z_{3} \tag{17}\\ -\frac{n_{\mathrm{m}, t}}{\pi^{3} q}\left[E\left(\frac{1}{n_{m, t}^{2}}\right)-\frac{2 n_{m, t}^{2}-1}{2 n_{m, t}^{2}} K\left(\frac{1}{n_{\mathrm{m}, t}^{2}}\right)\right] & \text { if } \min \left(z_{1}, z_{2}, z_{3}\right)=z_{3}\end{cases}
$$

Part IV

Results

linear power corrections to C-parameter \& thrust

linear power corrections to C-parameter \& thrust

\rightarrow find agreement with numerical results (small λ) and previous results (2-jet limit, ...)
linear power corrections to C-parameter \& thrust

\rightarrow find agreement with numerical results (small λ) and previous results (2-jet limit, ...)
\rightarrow have analytic results for entire 3-jet region and these are superior to numerical methods

linear power corrections to C-parameter \& thrust

\rightarrow find agreement with numerical results (small λ) and previous results (2-jet limit, \ldots)
\rightarrow have analytic results for entire 3-jet region and these are superior to numerical methods

Conclusions \& Outlook

- improved understanding of analytic structure of linear power corrections
- derived a factorisation formula which allows us to easily compute linear power corrections for different observables
- shown that same universal factor appears for different observables
- computed analytically linear power corrections for C-parameter and thrust T in entire three-jet region \rightarrow can now be used for pheno and α_{s} determination
- extended factorisation to arbitrary N-kinematics in usual Abelian approximation (Renormalons)
- future: investigate non-Abelian case
- future: pheno applications (α_{s} and m_{t} determinations)

Thank you for attention!

