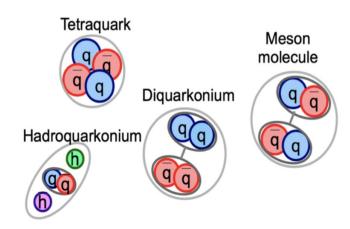
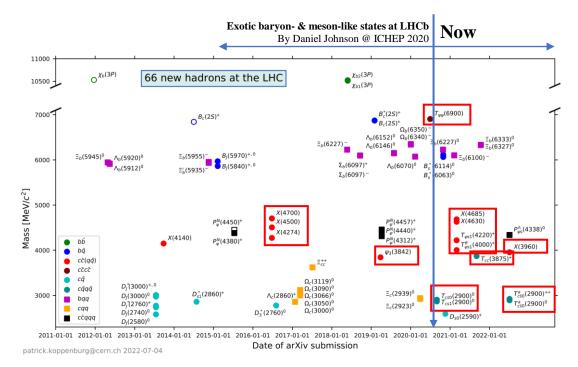
Studies of mesonic exotic states at LHCb

Ruiting Ma

University of Chinese Academy of Sciences, Beijing, China

On behalf of the LHCb Collaboration


July. 9th, 2022



Content

- ➤ The existence of mesonic exotic state has been discussed since 1964¹.
- Many mesonic exotic states are observed in the past two decades.
- ➤ A series of **theoretical models** are established to describe these states.

Masses and discovery date for states observed at LHCb. Hollow markers indicate superseded states.^{2, 3}

• 66 new hadrons observed at LHCb!

- ➤ 15 mesonic exotic candidates.
- ➤ 5 baryonic exotic candidates.⁴

¹ M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8 (1964) 214.

² https://www.nikhef.nl/~pkoppenb/particles.html

³ Exotic hadron naming convention: https://arxiv.org/abs/2206.15233

⁴ $P_c(4450)^+$ resolved into $P_c(4440)^+$ and $P_c(4457)^+$.

Open-charm mesonic exotic states:

$$\triangleright$$
 $B^+ \rightarrow D^+D^-K^+$

• $cs\overline{u}\overline{d}$: $X_0(2900)^0$, $X_1(2900)^0$

 \triangleright Inclusive $D^0D^0\pi^+$

• $cc\overline{u}\overline{d}$: T_{cc}^+

Phys. Rev. Lett. 125.242001

Phys. Rev. D102.112003

Nat. Phys. (2022)

Nat. Commun. 13, 3351

$$> B^0 \to \overline{D}{}^0 D_s^+ \pi^- \& B^+ \to D^- D_s^+ \pi^+$$

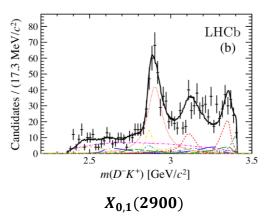
• $c\bar{s}u\bar{d}$: $T_{c\bar{s}0}^a(2900)^{++}$

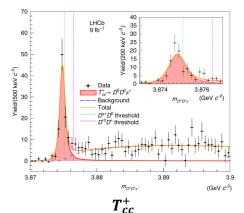
• $c\bar{s}\bar{u}d$: $T^a_{c\bar{s}0}(2900)^0$

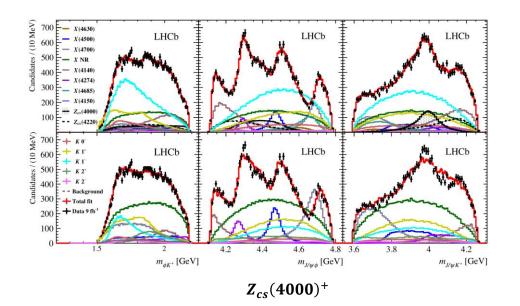
LHCb Preliminary

• Hidden-charm mesonic exotic states:

$$\triangleright$$
 $B^+ \rightarrow J/\psi \phi K^+$

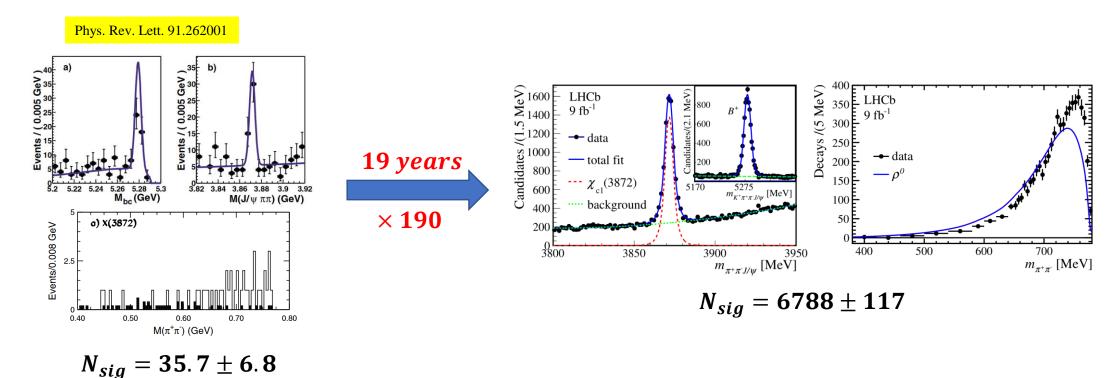

Phys. Rev. Lett. 127, 082001


- $c\bar{c}u\bar{s}$: $Z_{cs}(4000)^+$, $Z_{cs}(4220)^+$
- $c\bar{c}s\bar{s}$: X(4630), X(4685)


$$\rightarrow B^+ \rightarrow K^+ \pi^+ \pi^- J/\psi$$

arXiv 2204.12597

- $\chi_{c1}(3872) \rightarrow \omega J/\psi$
- \triangleright $B^+ \rightarrow D_S^+ D_S^- K^+$
 - $c\bar{c}s\bar{s}: X(3960)$



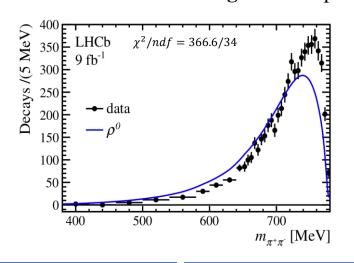
$B^+ \rightarrow K^+ \pi^+ \pi^- J/\psi$

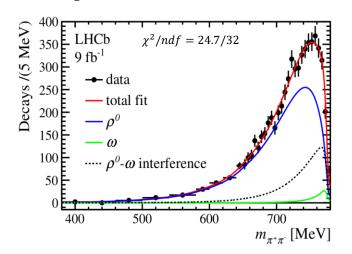
• Observation of sizeable ω contribution to χ_{c1} (3872) $\rightarrow \pi^+ \pi^- J/\psi$ decay

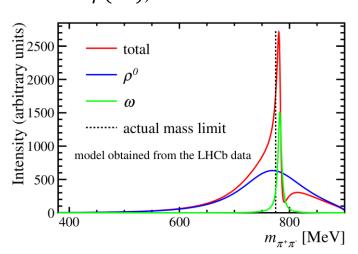
arXiv 2204.12597

- ightharpoonup The $ho^0 J/\psi$ process is suggested to explain the $m_{\pi^+\pi^-}$ distributions in $\chi_{c1}(3872) o \pi^+\pi^- J/\psi$ decay.
- $\succ \chi_{c1}(3872) \rightarrow \rho^0 J/\psi$ is **isospin violating decay**. Should be **highly suppressed** in charmonium decays.
- > Search for the isospin conserving $\chi_{c1}(3872) \rightarrow \omega J/\psi$ decay in $\chi_{c1}(3872) \rightarrow \pi^+\pi^-J/\psi$ process.
- Study the $m_{\pi^+\pi^-}$ distributions in $B^+ \to K^+\chi_{c1}(3872)$, $\chi_{c1}(3872) \to \pi^+\pi^- J/\psi$ decays with large statistic.

• Observation of sizeable ω contribution to χ_{c1} (3872) $\rightarrow \pi^+ \pi^- J/\psi$ decay

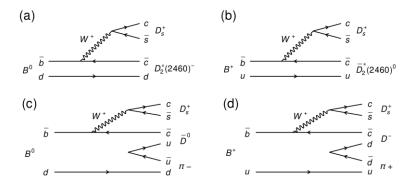

arXiv 2204.12597

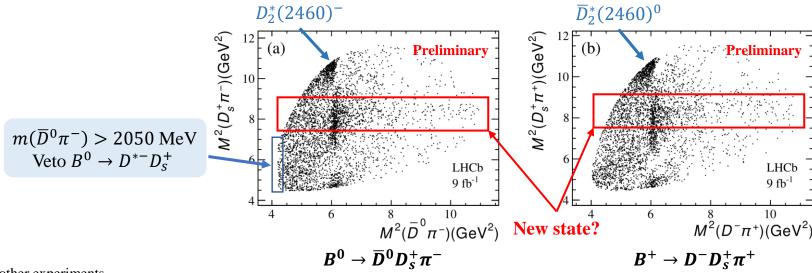

- The $m_{\pi^+\pi^-}$ distributions cannot be described by ρ^0 component.
- Well described by a two channel K-matrix model, including both ρ^0 and ω contribution!


$$K = \frac{1}{m_{\rho}^2 - s} \begin{pmatrix} g_{\rho \to 2\pi}^2 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{m_{\omega}^2 - s} \begin{pmatrix} g_{\omega \to 2\pi}^2 & g_{\omega \to 2\pi} g_{\omega \to 3\pi} \\ g_{\omega \to 2\pi} g_{\omega \to 3\pi} & g_{\omega \to 3\pi}^2 \end{pmatrix}$$

$$\begin{array}{rcl} g_{\rho\to 2\pi}^2 & = & m_\rho \, \Gamma_\rho/\varrho_{2\pi}(m_\rho^2), \\ g_{\omega\to 3\pi}^2 & = & m_\omega \, \Gamma_\omega \mathcal{B}(\omega\to \pi^+\pi^-\pi^0)/\varrho_{3\pi}(m_\omega^2), \\ g_{\omega\to 2\pi}^2 & = & m_\omega \, \Gamma_\omega \mathcal{B}(\omega\to \pi^+\pi^-)/\varrho_{2\pi}(m_\omega^2). \end{array}$$

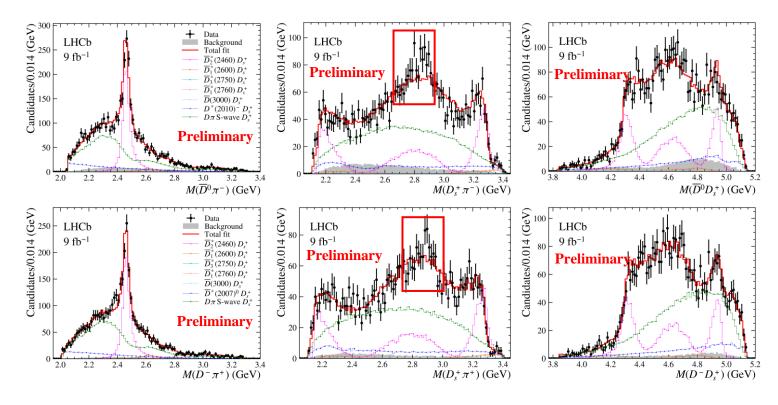
- \checkmark The ω contribution:
 - ✓ $(21.4 \pm 2.3 \pm 2.0)\%$ of the total rate.
 - ✓ $(1.9 \pm 0.4 \pm 0.3)\%$ when excluding interference effects.
- **✓** The limit phase space impact the coupling constants.
 - ✓ By setting $m_{\chi_{c1}(3872)} = 4000$ MeV: $\frac{g_{\chi_{c1}(3872) \to \rho^0 J/\psi}}{g_{\chi_{c1}(3872) \to \omega J/\psi}} = \sqrt{\frac{\mathcal{B}(\omega \to \pi^+\pi^-)}{\mathcal{R}_{\omega/\rho}^{0'}}} = 0.29 \pm 0.04.$
 - ✓ A factor of six larger than expected for a pure charmonium state! $(0.045 \pm 0.001 \text{ for } \psi(2S))$




• First observation of a doubly charged tetraquark and its neutral partner.

LHCb Preliminary

- The evidence of $X(5568)(B_s^0\pi^+)^*$ and observation of $X_{0,1}(2900)(D^+K^-)$ motivates the search for the $D_s^+\pi^\pm$ states.
- $\triangleright D_{s0}^*(2317)^+(D_s^+\pi^0)$ is thought to have some tetraquark component in several theoretical descriptions.
- - ✓ $4420 B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$ candidates, purity 90.7%.
 - ✓ 3940 $B^+ \rightarrow D^- D_s^+ \pi^+$ candidates, purity 95.2%.
 - ✓ **A faint horizontal band** at the $D_s\pi$ mass square around 8.5 GeV²
- ✓ Similar features in the Feynman diagrams and Dalitz plots
 - ✓ Simultaneous amplitude analysis!


Feynman diagrams

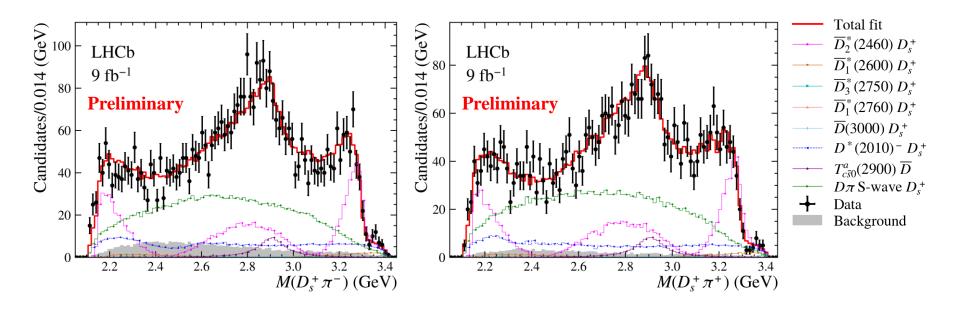
*Has not been confirmed by other experiments.

• First observation of a doubly charged tetraquark and its neutral partner.

LHCb Preliminary

♦ Fit strategy – simultaneous fit

- lack Include all the D^* and D^{**} states with natural spin-parity.
- $\overline{D}\pi$ S-wave component: QMI spline points.*
- lack All parameters, except $\overline{D}^*(2007)^0$ and $D^*(2010)^-$ are shared.


✓ Fit result

- \checkmark $m(\overline{D}\pi)$ and $m(\overline{D}D_s^+)$ well described.
- ✓ Peaking structures near $m(D_s^+\pi) = 2.9$ GeV!
- ✓ Further \overline{D}^{**} disfavored.

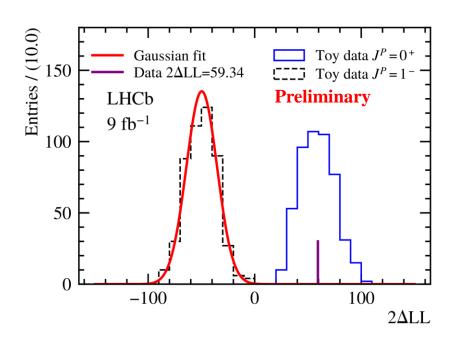
^{*11} spline points at [1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9, 3.4] GeV

• First observation of a doubly charged tetraquark and its neutral partner.

LHCb Preliminary

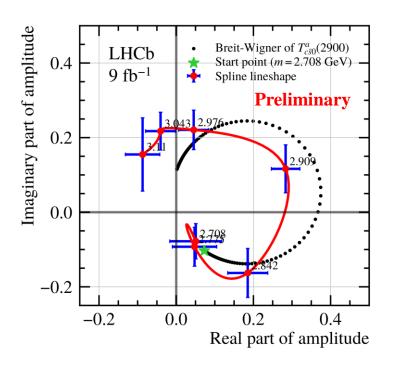
- Two $D_s^+\pi$ exotic states with shared parameters are added.
 - ✓ J^P up to 3⁺ are tested, $\mathbf{0}^+$ produces the best likelihood.
 - ✓ Significance greater that 9σ .
 - ✓ Mass and width are measured:

$$M = 2.908 \pm 0.011 \pm 0.020 \,\text{GeV}$$


 $\Gamma = 0.136 \pm 0.023 \pm 0.011 \, \mathrm{GeV},$

✓ Named* as $T_{c\bar{s}0}^a(2900)^0$ $(D_s^+\pi^-)$ and $T_{c\bar{s}0}^a(2900)^{++}$ $(D_s^+\pi^+)$

$B^0 o \overline{D}{}^0 D_s^+ \pi^- \& B^+ o D^- D_s^+ \pi^+$


• First observation of a doubly charged tetraquark and its neutral partner.

LHCb Preliminary

✓ Spin-parity favored 0^+ over 1^- with a significance about 7.6σ .

♦ Argand diagram

- ✓ Replace the BW of $T_{c\bar{s}0}^a$ with spline points.
- **✓** Lineshape consistent.

- First observation of a doubly charged tetraquark and its neutral partner.
 - **lack** Separate $T^a_{c\bar{s}0}$ parameters
 - ✓ $-\ln \mathcal{L}$ improved by **2.8**, with **4** free parameters added.
 - ✓ Masses and widths are **consistent** with each other.
 - ✓ Isospin triplet!

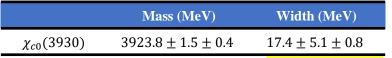
	Mass (GeV)	Width (GeV)	Significance
$T^a_{c\bar{s}0}(2900)^0$	$2.892 \pm 0.014 \pm 0.015$	$0.119 \pm 0.026 \pm 0.012$	8.0σ
$T^a_{c\bar{s}0}(2900)^{++}$	$2.921 \pm 0.017 \pm 0.019$	$0.137 \pm 0.032 \pm 0.014$	6.5σ

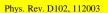
- ✓ First observation of a doubly charged mesonic exotic state, together with its neutral partner.
 - **✓** Belong to the same isospin triplet.
 - ✓ Spin-parity: 0⁺
 - ✓ Minimum quark content: $T_{c\bar{s}0}^a(2900)^{++}$: $[c\bar{s}u\bar{d}]$; $T_{c\bar{s}0}^a(2900)^0$: $[c\bar{s}\bar{u}d]$
 - ✓ Similar mass with $X_0(2900)$ ($cs\overline{u}\overline{d}$), but width and flavor contents are different.

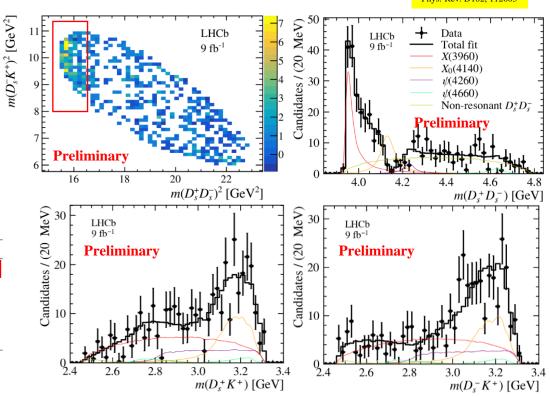
$B^+ \rightarrow D_S^+ D_S^- K^+$

• Observation of a resonant structure near the $D_s^+D_s^-$ threshold

LHCb Preliminary

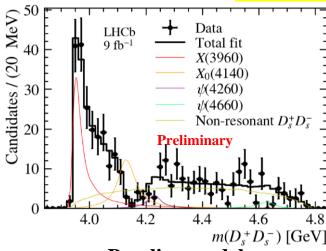

- \triangleright Theoretical studies suggest that the $\chi_{c0}(3930)$ may be dominated by $c\bar{c}s\bar{s}$ constituents.
- \triangleright Search for $D_s^+D_s^-$ resonance near mass threshold.
- 360 signal yields, Clear band near $D_s^+D_s^-$ mass threshold.
- lacktriangle All possible charmonium and D^{**} resonances are tested.
 - No significant $D_s K$ state (> 3σ).
 - lacktriangle Baseline model: $1^{--} \psi(4260), \psi(4660)$ states, a non-resonant component, and $0^{++} X(3960), X_0(4140)$ states.
 - \bigstar X(3960) parameterised by a Flatté-like formula ($D_s^+D_s^-$ channel):


$$R(m \mid M_0, g_j) = \frac{1}{M_0^2 - m^2 - iM_0 \sum_j g_j \rho_j(m)},$$

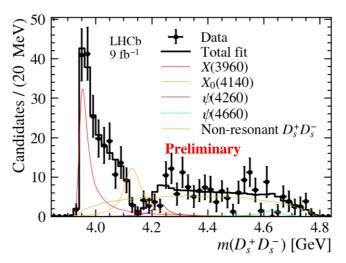

✓ Fit result:

Component	J^{PC}	$M_0 \; ({ m MeV})$	$\Gamma_0 \; ({ m MeV})$	$\mathcal{F}~(\%)$	\mathcal{S} (σ)
X(3960)	0_{++}	$3956 \pm 5 \pm 11$	$43 \pm 13 \pm 8$	$25.4 \pm 7.7 \pm 8.0$	$12.6\ (14.3)$
$X_0(4140)$	0_{++}	$4133 \pm 6 \pm 11$	$67 \pm 17 \pm 7$	$16.7 \pm 4.7 \pm 7.5$	3.7(3.9)
$\psi(4260)$	1	4230 [59]	55 [59]	$3.6 \pm 0.4 \pm 3.0$	3.1(3.3)
$\psi(4660)$	1	4633 [31]	64 [31]	$2.2 \pm 0.2 \pm 0.5$	2.9(3.2)
NR	S-wave	-	-	$46.1 \pm 13.2 \pm 11.1$	3.1(3.4)

- ✓ $m(D_s^+D_s^-)$ well described by fit model.
- ✓ The determined mass and width of X(3960) are consistent with the $\chi_{c0}(3930)$ observed in $B^+ \to D^+D^-K^-$ analysis within 3σ.



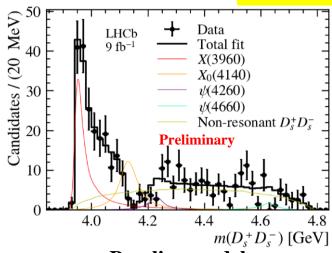
Mesonic exotic


- Observation of a resonant structure near the $D_s^+D_s^-$ threshold
 - \triangleright Whether X(3960) and $\chi_{c0}(3930)$ states are the same resonance?
 - lacklost Extended the Flatté-like formula, add D^+D^- channel.
 - ✓ **Likelihood** is essentially **unchanged**.
 - ✓ Mass and width are consistent with baseline model (0.5σ) .
 - lacktriangle Calculate the partial width ratio of X to D^+D^- and $D_S^+D_S^-$:

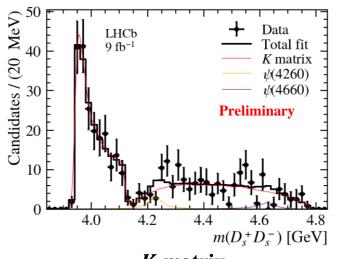
$$\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}^{(1)} \mathcal{F}_X^{(1)}}{\mathcal{B}^{(2)} \mathcal{F}_X^{(2)}} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08,$$

- $\checkmark \Gamma(X \to D^+D^-)$ much smaller than $\Gamma(X \to D_S^+D_S^-)$:
 - X(3960) and $\chi_{c0}(3930)$ are either not same state, or the same non-conventional charmonium-like state containing dominant $c\bar{c}s\bar{s}$ constituents.

Baseline model


Extended Flatté

$B^+ \rightarrow D_s^+ D_s^- K^+$


- Observation of a resonant structure near the $D_s^+D_s^-$ threshold
 - Whether the dip in $m(D_s^+D_s^-)$ at 4.13 GeV relate to the nearby $J/\psi\phi$ threshold (4.12 GeV)?
 - ◆ Employ a simple *K*-matrix model:
 - Contains single X(3960) state and two coupled channels, $D_s^+D_s^-$ and $J/\psi\phi$.

$$\begin{pmatrix} \mathcal{M}_{D_s^+D_s^- \to D_s^+D_s^-} & \mathcal{M}_{D_s^+D_s^- \to J/\psi\phi} \\ \mathcal{M}_{J/\psi\phi \to D_s^+D_s^-} & \mathcal{M}_{J/\psi\phi \to J/\psi\phi} \end{pmatrix} \equiv \begin{pmatrix} \mathcal{K}_{11} & \mathcal{K}_{12} \\ \mathcal{K}_{21} & \mathcal{K}_{22} \end{pmatrix}$$

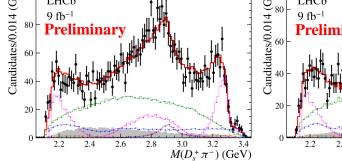
- ✓ Fit quality consistent with baseline model:
 - ✓ $-2\ln\mathcal{L}$ is worsen by 4.6, while ndf is increased by 1.
 - \checkmark The dip is **well described** by the *K*-matrix model.
- ◆ The fit with two channels Flatté-like formular and *K*-matrix parameterizations are **unstable**.
 - ✓ Neither of them is taken as baseline model.
 - ✓ More data samples are needed!

Baseline model

K-matrix

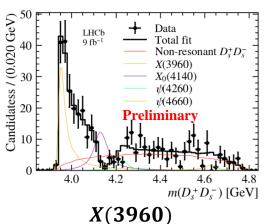
Summary

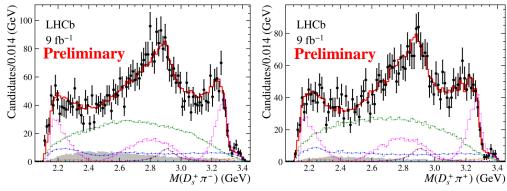
In the past two years, great improvements on mesonic exotic states studies have

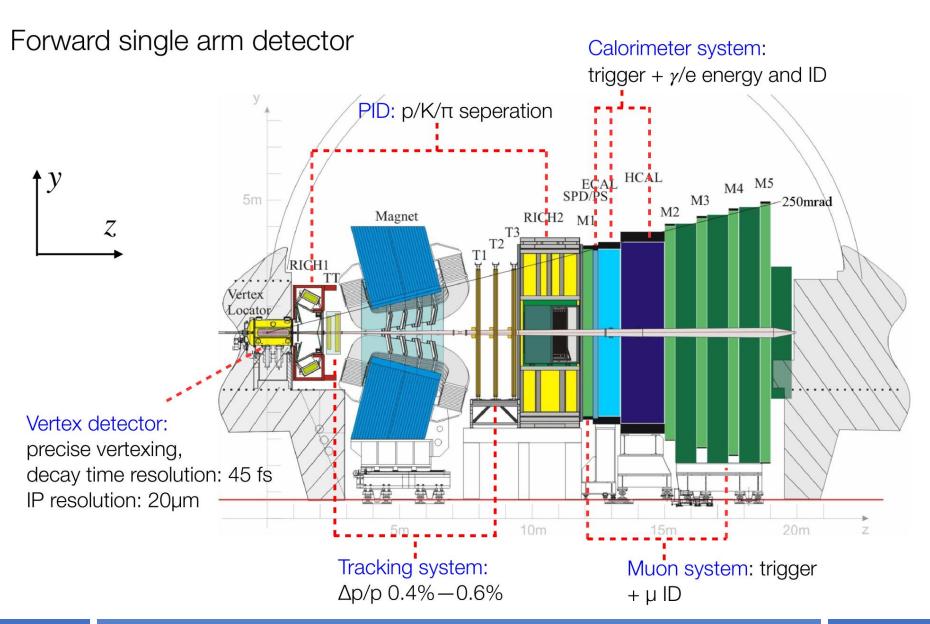

been performed in LHCb collaboration:

□ Open-charm:

- ✓ First open-charm tetraquark states: $X_{0,1}(2900)$,
- \checkmark First doubly charm tetraquark state: T_{cc}^+
- ✓ First doubly charged tetraquark and its isospin partner: $T_{c\bar{s}}^a(2900)^{0,++}$


☐ Hidden-charm:


- $\checkmark D^+D^-: \chi_{c0}(3930)$
- $\checkmark J/\psi K^+: Z_{cs}(4000)^+, Z_{cs}(4220)^+$
- $\sqrt{J/\psi\phi}$: X(4685), X(4630)
- $\checkmark \chi_{c1}(3872) \rightarrow \omega(\pi\pi)J/\psi$
- $\sqrt{D_s^+D_s^-}: X(3960)$

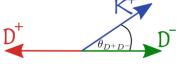


- More analyses with LHCb Run 1 and Run 2 dataset are ongoing.
- LHC Run 3 data taking start recently.

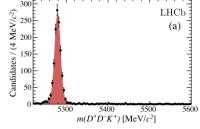
Back Up

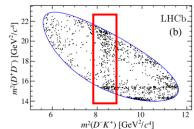
Phys. Rev. Lett. 125.242001

• Model-independent analysis of the $B^+ \to D^+D^-K^+$ decay


- \triangleright Only charmonium states are expected to contribute to $B^+ \to D^+D^-K^+$ decay.
- \checkmark Clear $\psi(3770)$ and $\chi_{c2}(3930)$ peaks in D^+D^- spectrum.
- ✓ Obvious **peaking structures** in D^-K^+ spectrum at 8.5 GeV²/ c^4 (2.9 GeV/ c^2).

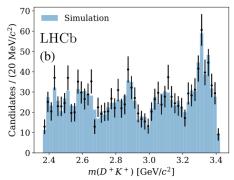
♦ Model-independent analysis :

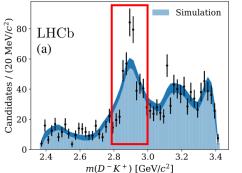

• Generate Phase space MC samples, and weighted by:

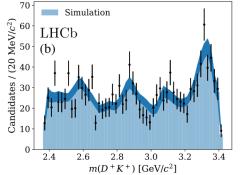

$$\eta_i = \frac{2}{N_j^{Sim}} \times \sum_{k=0}^{k_{\text{max}}} \left\langle Y_k^j \right\rangle P_k[h_i(D^+D^-)]$$

then project to $m(D^-K^+)$ and $m(D^+K^+)$ spectra.

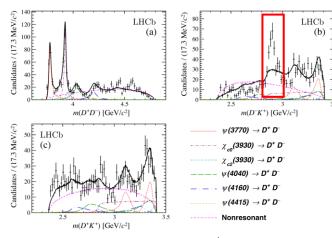
$$h(D^+D^-) = cos(\theta_{D^+D^-})$$

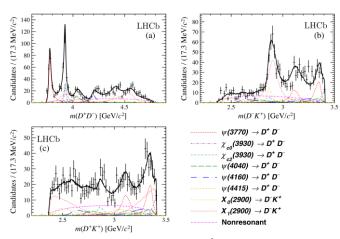



$$P_{k}[h(D^{+}D^{-})] = \sqrt{\frac{2k+1}{2}} \times 2^{k} \sum_{r=0}^{k} [h(D^{+}D^{-})]^{r} \binom{k}{r} \binom{\frac{k+r-1}{2}}{k}$$


$$\left\langle Y_{k}^{j} \right\rangle = \sum_{l=1}^{N_{j}^{Data}} w_{l} P_{k}[h_{l}(D^{+}D^{-})]$$

- ✓ $m(D^-K^+)$ could be well described with **high** k_{max} .
- ✓ Clear deviation on $m(D^-K^+)$ spectrum around 2.9 GeV/ c^2 with $k_{max} = 4$ ($J_{max} = 2$).
- \checkmark The **significance** of disagreement is estimated to be 3.9 σ with $k_{max} = 4$ and 3.7 σ with $k_{max} = 6$ by using test statistic.




Phys. Rev. D102.112003

- Amplitude analysis of the $B^+ \rightarrow D^+D^-K^+$ decay
 - ◆ Preform a model-dependent analysis to extract the parameter of the potential exotic state.
 - lacktriangle Results with only D^+D^- resonances:
 - Including $\psi(3770)$, $\chi_{c0}(3930)$, $\chi_{c2}(3930)$, $\psi(4040)$, $\psi(4160)$ and $\psi(4415)$ resonances.
 - \checkmark $m(D^+D^-)$ and $m(D^+K^+)$ could be well described.
 - ✓ Large deviation on $m(D^-K^+)$ spectrum around 2.9 GeV/ c^2 .
 - lacktriangle Two D^-K^+ resonances are added:
 - \square $X_0(2900), J^P = 0^+$
 - Mass: $2866 \pm 7 \pm 2 \text{ MeV}/c^2$
 - Width: $57 \pm 12 \pm 4 \text{ MeV}$
 - \square $X_1(2900), J^P = 1^-$
 - Mass: $2904 \pm 5 \pm 1 \text{ MeV}/c^2$
 - Width: $110 \pm 11 \pm 4 \text{ MeV}$

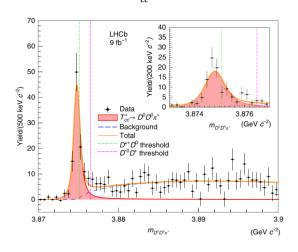
- In $\chi_{cl}(3930)$ region:
 - \square $\chi_{c0}(3930), J^P = 0^+$
 - Mass: $3923.8 \pm 1.5 \pm 0.4 \text{ MeV}/c^2$
 - Width: $17.4 \pm 5.1 \pm 0.8 \text{ MeV}$
 - \square $\chi_{c2}(3930), J^P = 2^+$
 - Mass: $3926.8 \pm 2.4 \pm 0.8 \text{ MeV}/c^2$
 - Width: $34.2 \pm 6.6 \pm 1.1 \text{ MeV}$
- ✓ With the **amplitude analysis**, two exotic D^-K^+ resonances with spin-0 and spin-1 are observed.
- ✓ Discovery of contributions from spin-0 and spin-2 χ_{cJ} components in the region of the existing χ_{c2} (3930).

Fitting result without D^+K^- reconances

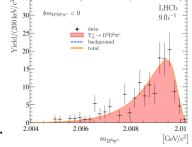
Fitting result with D^+K^- reconances

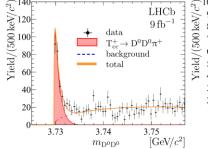
Nat. Phys. (2022)

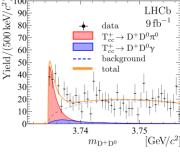
• Observation of an exotic narrow doubly charmed tetraquark


- \triangleright The existence of $QQ\bar{q}\bar{q}$ states have been widely discussed for a long time.
- \triangleright Theoretical predictions for the mass of $cc\bar{u}\bar{d}$ state lie in the range $\delta m \in [-300, 300]$ MeV of $D^{*+}D^{0}$ mass threshold.
- Reconstruct the $D^0D^0\pi^+$ candidates by selecting two D^0 and a π^+ at same pp interaction point.
- lack Non- D^0 backgrounds are subtracted by a two-dimensional fit on D^0 versus D^0 mass spectra.
- lacktriangle Constrain D^0 mass to the known value.
- ✓ Narrow peak near $D^{*+}D^{0}$ mass threshold!
- Extract parameters of narrow peak by a fit:
 - ♦ **Signal**: P-wave two-body $(D^0D^0 + \pi^+)$ Breit-Wigner function \otimes detector resolution.
 - **Background**: two-body $(D^{*+} + D^0)$ PHSP function + 2nd-order polynomial.
- ✓ Parameters are determined to be:

$$\delta m_{\rm BW} = -273 \pm 61 \pm 5^{+11}_{-14} \,\text{keV} \,c^{-2}$$


$$\Gamma_{\rm BW} = 410 \pm 165 \pm 43 \, ^{+18}_{-38} \, {\rm keV}$$
,

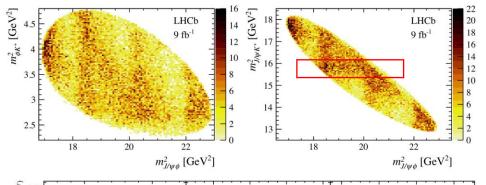

- **✓** First observation of a doubly charmed tetraquark state:
 - ✓ The **narrowest** exotic state observed to date.
 - ✓ Minimal quark content: $cc\overline{u}\overline{d}$
 - ✓ Consistent with the expected $1^+ T_{cc}^+$ isoscalar tetraquark ground state.

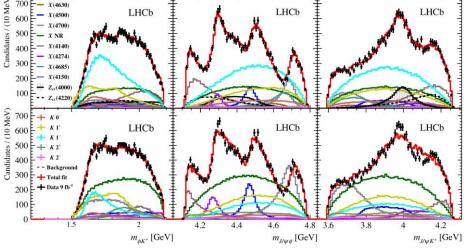

$\delta m \equiv m_{T_{cc}^{+}} - (m_{D^{*+}} + m_{D^{0}})$

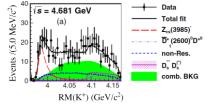
♦ Further tests:

Mesonic exotic

Phys. Rev. Lett. 127, 082001


• Observation of New Resonances Decaying to $J/\psi K^+$ and $J/\psi \phi$


- ightharpoonup The existence of the $Z_{cs} o J/\psi K^+$ had been predicted.
- $ightharpoonup Z_{cs}(3985)^+$ observed by BESIII in $(D_s^+ \overline{D}^{*0} + D_s^{*+} \overline{D}^0)$ final states.
- Run 1 result: Four $J/\psi\phi$ state observed, but no $J/\psi K^+$ resonance.
- ◆ Run 1 + 2:
 - **Distinct band near 16 GeV**² of $J/\psi K^+$ mass squared.
 - Run 1 model failed to describe the $m_{I/\psi K^+}$ distribution.
- ✓ The model requires improvements:
 - ✓ Two new $J/\psi K^+$ states:


	Mass (MeV)	Width (MeV)	Spin-Parity
$Z_{cs}(4000)^+$	$4003 \pm 6^{+4}_{-14}$	$131\pm15\pm26$	1+
$Z_{cs}(4220)^+$	$4216 \pm 24^{+43}_{-30}$	${\bf 233 \pm 52^{+97}_{-73}}$	1+ or 1-

✓ Two new $I/\psi \phi$ states:

	Mass (MeV)	Width (MeV)	Spin-Parity
X(4685)	$4684 \pm 7^{+13}_{-16}$	$126 \pm 15^{+37}_{-41}$	1+
X(4630)	$4626 \pm 16^{+18}_{-110}$	$174 \pm 27 ^{+134}_{-73}$	1-

BESIII result

- \checkmark First observation of a relatively narrow $Z_{cs}(4000)^+$ state decay to the $J/\psi K^+$ final state:
 - ✓ Its mass consistent with $Z_{cs}(3985)^+$ observed by BESIII experiment, but width is significant wider.
 - ✓ Further test support that they are different states.