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Goals
Test state-of-the-art predictions.
Provide additional constraints on
PDFs at high x and on αS.
Test possible 4-quark c.i.

Today
Two 13 TeV measurements (anti-kt,
R = 0.4− 0.7) with 36.3− 33.5 fb−1:

Data reduction and improvements
w.r.t. analysis at 8 TeV in this
presentation.
QCD interpretation in the directly
following presentation by Katerina.
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MotivationFactorisation [3]

σpp→jet+X︸ ︷︷ ︸
experimental data

=
∑

ij∈gqq̄

PDFs︷ ︸︸ ︷
fi(xi, µ

2
F )⊗ fj(xj , µ

2
F )

⊗ σ̂ij→jet+X

(
xi, xj ,

Q2

µ2
F

,
Q2

µ2
R

, αS(µ
2
R)

)
︸ ︷︷ ︸

SM(EFT)

Predictions
σ̂ NNLO & NLO+NLL
f Various global PDF sets

−→ NP & EW corrections also
included to the predictions in our
comparisons.

Observable definition
At hadron level, using anti-kT clustering
algorithm [4, 5] (R = 0.4, 0.7):

d2σ

dpT dy
=

1

L
N eff

jets
∆pT ∆y

with pT > 97GeV and |y| < 2.0
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Former measurements at LHC
√
s ATLAS CMS

2.76 TeV 0.0002 fb−1 [6] 0.0054 fb−1 [7]
7 TeV 4.5 fb−1 [8] 5.0 fb−1 [9, 10]
8 TeV 20 fb−1 [11] 20 fb−1 [12]
13 TeV 3.2 fb−1 [13] 0.071 fb−1 [14]

−→ in particular, the measurement with
8 TeV has been successfully included in
several global PDF fits [15, 16, 17].

A precision measurement in log scale
« Logarithmic scale can hide monsters. »

1% bin-to-bin uncorrelated systematic
uncertainties to cover residual effects.
At medium pT, much larger than statistical
uncertainty.
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Data setDetector level selection
Multicount observable, i.e. several jets per event:

events High-PU data recorded in 2016.
Recorded if leading jet with
online reconstruction in
|y| < 2.5 fires one of the
single-jet triggers.
“Good” events (PV, MET, ...).

jets PF+CHS jet reconstruction.
Jets reconstructed in good
regions of the detector within
ECAL acceptance.
“Good” jets (based on jet
constituents).

Simulated data
generator PDF ME tune [18]
PYTHIA 8 (230) [19] NNPDF 2.3 [20] LO 2 → 2 CUETP8M1
MADGRAPH5_aMC@NLO (2.4.3) [21, 22] NNPDF 2.3 [20] LO 2 → 2, 3, 4 CUETP8M1
HERWIG++ (2.7.1) [23] CTEQ6L1 [24] LO 2 → 2 CUETHppS1
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CountingTrigger strategy
In 2016, bunches cross every 25 ns at CMS
−→ production rate too large to record all jets.

Record jets with 6= rates w.r.t. their energy
−→ multiply by event-based prescale factor in count of jets.

Identify jets on the fly with fast reconstruction [25]
−→ Use only regions of 99.5% of efficiency in every y bin

(+ residual inefficiency corrected).
−→ Different w.r.t. former measurement, where every single jet was
passing a trigger selection & trigger contributions were normalised
w.r.t. their respective Leff

"

innen
-1

>
Jet
pt

pHLT
T (GeV) 40 60 80 140 200 260 320 400 450

AK4 pPF
T (GeV) 74–97 97–133 133–196 196–272 272–362 362–430 430–548 548–592 >592

Leff ( pb−1) 0.267 0.726 2.76 24.2 103 594 1770 5190 36300

AK7 pPF
T (GeV) 74–97 97–114 114–196 196–272 272–330 330–395 395–507 507–592 >592

Leff ( pb−1) 0.0497 0.328 1.00 10.1 85.8 518 1526 4590 33500

Uncertainties
Statistical correlations
Luminosity L (correlated 1.2%)

Trigger uncertainty (uncorrelated 0.2%)
Inefficiencies (e.g. ECAL prefiring)
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Jet energy calibration
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Corrections [26, 27]
Scale 〈pRef

T 〉 ≈ 〈pPF
T 〉 both in real and simulated data

−→ Many sources of uncertainties related to various effects (e.g. PU).

Resolution smearing rate from true level to detector level corrected in
simulated data to resemble real data
−→ Global uncertainty from SFs.
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Pile-up corrections

Context
Several pp collisions at each bunch crossing:
Pros higher chances for rare events (high pT).
Cons I distinctions among collisions more difficult

(multiplicity);
I additional contribution to jets (scale offset &

worse resolution).

PU profile correction
Correct the profile of simulated data to profile in
real data by event reweighting
−→ additional uncertainty from MB cross section.
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Unfolding
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Simulation CMS 13 TeV

Matrix inversion
For binned data:

Ax + b = y (1)

x data distribution at particle level
y data distribution at detector level
b background spectrum at detector level
A probability matrix (figure)

−→ instable...

Least-square minimisation [28, 29]
with #detector-level bins = 2× #particle-level bins (but no Tikhonov regularisation)

χ2 = min
x

[
(Ax + b − y)ᵀ V−1 (Ax + b − y)

]
(2)

V covariance matrix accounting for partial correlations
(at 8 TeV, we used D’Agostini [30, 31] unfolding in each y bin separately with toy RM)
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For binned data:

Ax + b = y (1)

x data distribution at particle level
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b background spectrum at detector level
A probability matrix (figure)

−→ instable...

Least-square minimisation [28, 29]
with #detector-level bins = 2× #particle-level bins (but no Tikhonov regularisation)

χ2 = min
x

[
(Ax + b − y)ᵀ V−1 (Ax + b − y)

]
(2)

V covariance matrix accounting for partial correlations
(at 8 TeV, we used D’Agostini [30, 31] unfolding in each y bin separately with toy RM)
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Overview
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 EW⊗ NP ⊗CT14 NNLO 
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)-1 10×( 0.5 < |y| < 1.0
)-2 10×( 1.0 < |y| < 1.5
)-3 10×( 1.5 < |y| < 2.0

Result
4 y bins, from ∼ 100GeV to 3 TeV.
Bin uncertainty uncertainty almost
not visible in log scale.

So-called “tests of smoothness”
have been performed to check the
presence of steps or outliers in the
final spectrum.

Tests of smoothness [32]

χ2
n = min

bi

[
(x − ybi)

ᵀ V−1
x (x − ybi)

]
with yj

bi
=

1

∆pjT

∫
p
j
T

exp

(
n∑

i=0

bi Ti (log pT)

)
dpT

−→ χ2
6 ∼ ndf in all y bins!
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Predictions
NNLO with two scale choices obtained with NNLOJET [33, 34, 35].
−→ Also statistically limited!

NLO+NLL [36] with various global PDF [37, 38, 39, 40, 41] sets.
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Summary & Conclusions

The CMS Collaboration has produced two measurements of inclusive jet
production in pp collisions at 13 TeV.

The experimental analysis includes corrections to the jet count, the jet
energy, and the pile-up; all effects are corrected via the procedure of
unfolding.
Tests of smoothness have been applied to the data at all steps of the
analysis to preserve the quality of the data throughout the data reduction
Data are compared to FO predictions at NLO+NLL and NNLO.

−→ The paper has been published in JHEP! [42]

Grazie mille!
Stay in the room: the next talk is about the QCD interpretation...
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Acronyms I

AK4 anti kT algorithm (R = 0.4). 16–18
AK7 anti kT algorithm (R = 0.7). 16–18

ATLAS A Toroidal LHC ApparatuS. 9, 10

c.i. Contact Interactions. 4, 5
CHS Charged Hadron Subtraction. 12–15
CMS Compact Muon Solenoid. 9, 10, 16–18, 35–40

ECAL Electromagnetic CALorimeter. 12–18
EFT Effective Field Theory. 6–8
EW Electroweak. 6–8

FO fixed order. 35–40

LHC Large Hadron Collider. 9, 10

MB Minimum Bias. 21, 22
ME Matrix Element. 12–15

MET Missing Transverse Energy. 12–15

NLL Next to Leading Logarithm. 6–8, 32, 33,
35–40

NLO Next to Leading Order. 6–8, 32, 33, 35–40

NNLO Next to Next to Leading Order. 6–8, 32, 33,
35–40

NP Non-Perturbative. 6–8

PDF Parton Distribution Function. 4–10, 12–15,
32, 33

PF Particle-Flow. 12–15

PU pile-up. 12–15, 19–22

PV Primary Vertex. 12–15

QCD Quantum Chromodynamics. 4, 5, 35–40

RM Response Matrix. 25, 26

SF Scale Factor. 19, 20

SM Standard Model. 6–8
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