Introduction

Data reduction

Results

Summary & Conclusions

Back-up

# UH 1/16

### Inclusive jet measurements in CMS in 2016 pp collisions at 13 TeV

Patrick L.S. CONNOR on behalf of the CMS Collaboration

Universität Hamburg

7 July 2022







Bundesministerium für Bildung und Forschung

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE CDCS CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

# Introduction

Event display Outline Motivation History



CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-27 14:40:45.336640 GMT Run / Event / LS: 281707 / 1353407816 / 851

#### P. Connor

Introductior Event display Outline Motivation History

Data reduction

Results

Summary & Conclusions

Back-up



Ref. [2]

#### 13 TeV LHC parton kinematics

### Goals

Test state-of-the-art predictions.

Outline

- Provide additional constraints on PDFs at high x and on α<sub>S</sub>.
- Test possible 4-quark c.i.

UH 11 3/16

#### P. Connor

Introductior Event display Outline Motivation History

Data reduction

Results

Summary & Conclusions

Back-up

UH

H.

#### 13 TeV LHC parton kinematics 10<sup>9</sup> WI S 201 $x_{1,2} = (M/13 \text{ TeV}) \exp(\pm y)$ 10<sup>8</sup> O = MM = 10 TeV107 M =1 TeV 10<sup>6</sup> 105 Q<sup>2</sup> (GeV<sup>2</sup>) 104 M = 100 GeV 103 10<sup>2</sup> M = 10 GeVfixed 101 HERA target 10 10-5 10<sup>-3</sup> 10 $10^{-6}$ $10^{-4}$ $10^{-2}$ $10^{-1}$ $10^{\circ}$ х

Ref. [2]

## Outline

#### Goals

- Test state-of-the-art predictions.
- Provide additional constraints on PDFs at high x and on  $\alpha_{\rm S}$ .
- Test possible 4-quark c.i.

### Today

Two 13 TeV measurements (anti- $k_t$ , R = 0.4 - 0.7) with  $36.3 - 33.5 \,\text{fb}^{-1}$ :

- Data reduction and improvements w.r.t. analysis at 8 TeV in this presentation.
- QCD interpretation in the directly following presentation by Katerina.

#### Introduction Event display Outline Motivation History

Data reduction

Results

Summary & Conclusions

Back-up

Factorisation [3]  $\underbrace{\sigma_{pp \to jet+X}}_{\text{experimental data}} = \sum_{ij \in gq\bar{q}} \underbrace{f_i(x_i, \mu_F^2) \otimes f_j(x_j, \mu_F^2)}_{\bigotimes \hat{\sigma}_{ij \to jet+X} \left(x_i, x_j, \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_S(\mu_R^2)\right)}_{\text{SM(EFT)}}$  **Motivation** 

UH #16

#### Introduction Event display Outline Motivation History

Data reduction

Results

Summary & Conclusions

Back-up

Factorisation [3]  $\underbrace{\sigma_{pp \to jet+X}}_{\text{experimental data}} = \sum_{ij \in gq\bar{q}} \underbrace{f_i(x_i, \mu_F^2) \otimes f_j(x_j, \mu_F^2)}_{(m,m)}$ 

$$\underbrace{ \hat{\sigma}_{ij \to \mathsf{jet}+X} \left( x_i, x_j, \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_S(\mu_R^2) \right)}_{\mathsf{SM}(\mathsf{EFT})}$$

## **Motivation**

#### Predictions

- $\hat{\sigma}$  NNLO & NLO+NLL
- f Various global PDF sets

 $\longrightarrow$  NP & EW corrections also included to the predictions in our comparisons.

UH #16

Event display Motivation

Results

Summary &

Back-up

# UH 笧

### Factorisation [3]

 $\sigma_{pp}$ 

$$\underbrace{\sigma_{pp \to \text{jet}+X}}_{\text{experimental data}} = \sum_{ij \in gq\bar{q}} \overbrace{f_i(x_i, \mu_F^2) \otimes f_j(x_j, \mu_F^2)}^{\text{PDFs}}$$

$$\underbrace{ \hat{\sigma}_{ij \to \mathsf{jet}+X} \left( x_i, x_j, \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2}, \alpha_S(\mu_R^2) \right)}_{\mathsf{SM}(\mathsf{EFT})}$$

## **Motivation**

#### Predictions

- $\hat{\sigma}$  NNLO & NLO+NLL
- f Various global PDF sets

 $\rightarrow$  NP & EW corrections also included to the predictions in our comparisons.

### Observable definition

At hadron level, using anti- $k_{\rm T}$  clustering algorithm [4, 5] (R = 0.4, 0.7):

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} = \frac{1}{\mathcal{L}} \frac{N_{\mathrm{jets}}^{\mathrm{eff}}}{\Delta p_{\mathrm{T}}\,\Delta y}$$

with  $p_{\rm T} > 97 \,\text{GeV}$  and |y| < 2.0





Former measurements at LHC

| $\sqrt{s}$ | ATLAS                        | CMS                           |
|------------|------------------------------|-------------------------------|
| 2.76 TeV   | $0.0002  \text{fb}^{-1}$ [6] | $0.0054  \text{fb}^{-1}$ [7]  |
| 7 TeV      | $4.5  \text{fb}^{-1}$ [8]    | $5.0  \text{fb}^{-1}$ [9, 10] |
| 8 TeV      | $20  \text{fb}^{-1}$ [11]    | $20  \text{fb}^{-1}$ [12]     |
| 13 TeV     | $3.2{\rm fb}^{-1}$ [13]      | $0.071{ m fb}^{-1}$ [14]      |

 $\rightarrow$  in particular, the measurement with 8 TeV has been successfully included in several global PDF fits [15, 16, 17].

P. Connor Introduction Event display Outline Motivation History Data

**ICHEP** 

reductio

Results

Summary & Conclusions

Back-up

UH 5/16





### **History**

| Former | measurements | at | LHC |  |
|--------|--------------|----|-----|--|
|--------|--------------|----|-----|--|

| $\sqrt{s}$ | ATLAS                        | CMS                           |
|------------|------------------------------|-------------------------------|
| 2.76 TeV   | $0.0002  \text{fb}^{-1}$ [6] | $0.0054  \text{fb}^{-1}$ [7]  |
| 7 TeV      | $4.5  \text{fb}^{-1}$ [8]    | $5.0  \text{fb}^{-1}$ [9, 10] |
| 8 TeV      | $20  \text{fb}^{-1}$ [11]    | $20  \text{fb}^{-1}$ [12]     |
| 13 TeV     | $3.2{\rm fb}^{-1}$ [13]      | $0.071{\rm fb}^{-1}$ [14]     |

 $\rightarrow$  in particular, the measurement with 8 TeV has been successfully included in several global PDF fits [15, 16, 17].

### A precision measurement in log scale

- « Logarithmic scale can hide monsters. »
  - 1% bin-to-bin uncorrelated systematic uncertainties to cover residual effects.
  - At medium p<sub>T</sub>, much larger than statistical uncertainty.

# **Data reduction**

Data set Counting Jet energy calibration Pile-up corrections Unfolding

P. Connor

Introduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections Unfolding

Results

Summary & Conclusions

 $\mathsf{Back}\mathsf{-up}$ 

### Detector level selection

Multicount observable, i.e. several jets per event:

### Data set

UH (16)

P. Connor

#### Introduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections

Unfolding

Results

Summary & Conclusions

Back-up

### Detector level selection

Multicount observable, i.e. several jets per event:

events

- High-PU data recorded in 2016.Recorded if leading jet with
  - online reconstruction in |y| < 2.5 fires one of the single-jet triggers.
  - Good" events (PV, MET, ...).



UH (16)

P. Connor

#### Introduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections

Unfoldin

Results

Summary & Conclusions

Back-up

#### Detector level selection

Multicount observable, i.e. several jets per event:

events

- High-PU data recorded in 2016.Recorded if leading jet with
  - online reconstruction in |y| < 2.5 fires one of the single-jet triggers.
  - "Good" events (PV, MET, …).

jets

- PF+CHS jet reconstruction.
  - Jets reconstructed in good regions of the detector within ECAL acceptance.
  - "Good" jets (based on jet constituents).



UH 6/16

P. Connor

#### Introduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections

Results

Summary & Conclusions

Back-up

#### Detector level selection

Multicount observable, i.e. several jets per event:

events

jets

- High-PU data recorded in 2016.
  - Recorded if leading jet with online reconstruction in |y| < 2.5 fires one of the single-jet triggers.
  - "Good" events (PV, MET, …).
- PF+CHS jet reconstruction.
  - Jets reconstructed in good regions of the detector within ECAL acceptance.
  - "Good" jets (based on jet constituents).



### Simulated data

| generator                          | PDF            | ME                         | tune [18] |
|------------------------------------|----------------|----------------------------|-----------|
| рутніа 8 (230) [19]                | NNPDF 2.3 [20] | $LO 2 \rightarrow 2$       | CUETP8M1  |
| МаdGraph5_амс@nlo (2.4.3) [21, 22] | NNPDF 2.3 [20] | LO $2 \rightarrow 2, 3, 4$ | CUETP8M1  |
| HERWIG++ (2.7.1) [23]              | CTEQ6L1 [24]   | LO $2 \rightarrow 2$       | CUETHppS1 |

UH #

#### ntroduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections Unfolding

Results

Summary & Conclusions

Back-up

#### Trigger strategy

- In 2016, bunches cross every 25 ns at CMS → production rate too large to record all jets.
- Record jets with  $\neq$  rates w.r.t. their energy
  - $\longrightarrow$  multiply by event-based prescale factor in count of jets.
- Identify jets on the fly with fast reconstruction [25]
  - $\longrightarrow$  Use only regions of 99.5% of efficiency in every y bin
    - (+ residual inefficiency corrected).

 $\longrightarrow$  Different w.r.t. former measurement, where every single jet was passing a trigger selection & trigger contributions were normalised w.r.t. their respective  $\mathcal{L}_{eff}$ 

## Counting

#### ntroduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections

Results

Summary & Conclusions

Back-up

Trigger strategy

- In 2016, bunches cross every 25 ns at CMS → production rate too large to record all jets.
- Record jets with  $\neq$  rates w.r.t. their energy
  - $\longrightarrow$  multiply by event-based prescale factor in count of jets.
- Identify jets on the fly with fast reconstruction [25]  $\rightarrow$  Use only regions of 99.5% of efficiency in every y bin

(+ residual inefficiency corrected).

 $\longrightarrow$  Different w.r.t. former measurement, where every single jet was passing a trigger selection & trigger contributions were normalised w.r.t. their respective  $\mathcal{L}_{eff}$ 

## Counting



|     | $p_{T}^{HLT}$ (GeV)                     | 40     | 60     | 80      | 140     | 200     | 260     | 320     | 400     | 450   |
|-----|-----------------------------------------|--------|--------|---------|---------|---------|---------|---------|---------|-------|
| AK4 | $p_{\mathrm{T}}^{\mathrm{PF}}$ (GeV)    | 74–97  | 97-133 | 133-196 | 196-272 | 272-362 | 362-430 | 430–548 | 548-592 | >592  |
|     | $\mathcal{L}_{eff} (pb^{-1})$           | 0.267  | 0.726  | 2.76    | 24.2    | 103     | 594     | 1770    | 5190    | 36300 |
| AK7 | $p_{T}^{PF}$ (GeV)                      | 74–97  | 97-114 | 114-196 | 196-272 | 272-330 | 330-395 | 395-507 | 507-592 | >592  |
|     | $\mathcal{L}_{eff}$ (pb <sup>-1</sup> ) | 0.0497 | 0.328  | 1.00    | 10.1    | 85.8    | 518     | 1526    | 4590    | 33500 |

UH #

ntroduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections

Results

Summary & Conclusions

Back-up

UH

Ĥ

Trigger strategy

- In 2016, bunches cross every 25 ns at CMS → production rate too large to record all jets.
  - Description in the description of the i
- Record jets with  $\neq$  rates w.r.t. their energy
  - $\longrightarrow$  multiply by event-based prescale factor in count of jets.
- Identify jets on the fly with fast reconstruction [25]  $\rightarrow$  Use only regions of 99.5% of efficiency in every y bin

(+ residual inefficiency corrected).

 $\longrightarrow$  Different w.r.t. former measurement, where every single jet was passing a trigger selection & trigger contributions were normalised w.r.t. their respective  $\mathcal{L}_{eff}$ 

## Counting



|     | $p_{T}^{HLT}$ (GeV)                     | 40     | 60     | 80      | 140     | 200     | 260     | 320     | 400     | 450   |
|-----|-----------------------------------------|--------|--------|---------|---------|---------|---------|---------|---------|-------|
| AK4 | $p_{\mathrm{T}}^{\mathrm{PF}}$ (GeV)    | 74–97  | 97-133 | 133-196 | 196-272 | 272-362 | 362-430 | 430–548 | 548-592 | >592  |
|     | $\mathcal{L}_{eff} (pb^{-1})$           | 0.267  | 0.726  | 2.76    | 24.2    | 103     | 594     | 1770    | 5190    | 36300 |
| AK7 | $p_{T}^{PF}$ (GeV)                      | 74–97  | 97-114 | 114-196 | 196-272 | 272-330 | 330-395 | 395-507 | 507-592 | >592  |
|     | $\mathcal{L}_{eff}$ (pb <sup>-1</sup> ) | 0.0497 | 0.328  | 1.00    | 10.1    | 85.8    | 518     | 1526    | 4590    | 33500 |

### Uncertainties

- Statistical correlations
- Luminosity  $\mathcal{L}$  (correlated 1.2%)

- Trigger uncertainty (uncorrelated 0.2%)
- Inefficiencies (e.g. ECAL prefiring)

#### Introduction

reduction Data set Counting Jet energy calibration Pile-up corrections Unfolding

Results

Summary & Conclusions

 $\mathsf{Back}\mathsf{-up}$ 

### Jet energy calibration



UH #1 8/16



### Corrections [26, 27]

UH 8/16

#### Introduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections Unfolding

Results

Summary & Conclusions

Back-up





#### Context

Several pp collisions at each bunch crossing:

**Pros** higher chances for rare events (high  $p_{\rm T}$ ).

- Cons distinctions among collisions more difficult (multiplicity);
  - additional contribution to jets (scale offset & worse resolution).

### Pile-up corrections



Mean number of interactions per crossing

#### Introduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections Unfolding

Results

Summary & Conclusions

Back-up

UH # 9/16



#### Context

Cons

Several pp collisions at each bunch crossing:

**Pros** higher chances for rare events (high  $p_{\rm T}$ ).

- distinctions among collisions more difficult (multiplicity);
  - additional contribution to jets (scale offset & worse resolution).

### PU profile correction

Correct the profile of simulated data to profile in real data by event reweighting  $\rightarrow$  additional uncertainty from MB cross section.

### Pile-up corrections











#### ntroduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections

Unfolding Results

Summary & Conclusions

Back-up



## Unfolding

### Matrix inversion

For binned data:

$$\mathbf{A}\mathbf{x} + \mathbf{b} = \mathbf{y} \tag{1}$$

x data distribution at particle level
y data distribution at detector level
b background spectrum at detector level
A probability matrix (figure)

 $\longrightarrow$  instable...

UH 12/16



with #detector-level bins =  $2 \times \#$ particle-level bins

(but no Tikhonov regularisation)

$$\chi^{2} = \min_{\mathbf{x}} \left[ (\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y})^{\mathsf{T}} \mathbf{V}^{-1} \left( \mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y} \right) \right]$$
(2)

V covariance matrix accounting for partial correlations

(at 8 TeV, we used D'Agostini [30, 31] unfolding in each y bin separately with toy RM)

UH 12/16

#### ntroduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections Unfolding

Results

Summary & Conclusions

Back-up



## Unfolding

### Uncertainties

- The limited statistics of the simulated data contributes as an extra uncertainty.
- Additional contributions from migrations across the edges of the phase space are included.

UH #13/16



ntroduction

Data reduction Data set Counting Jet energy calibration Pile-up corrections Unfolding

Results

Summary & Conclusions

Back-up



## Unfolding

#### Uncertainties

- The limited statistics of the simulated data contributes as an extra uncertainty.
- Additional contributions from migrations across the edges of the phase space are included.
- All systematic uncertainties are inferred to particle-level by applying the variations either in the input data or in the probability matrix (and smoothed).





UH 13/16

# **Results**

Overview Comparison

ntroduction

Data reduction

Results Overview Comparisor

Summary & Conclusions

Back-up



### **Overview**

### Result

- 4 y bins, from  $\sim 100 \,\mathrm{GeV}$  to 3 TeV.
- Bin uncertainty uncertainty almost not visible in log scale.

UH 14/16

Introduction

Data reductior

Results Overview Comparisor

Summary & Conclusions

Back-up

UH #14/16



### **Overview**

#### Result

- 4 y bins, from  $\sim 100 \text{ GeV}$  to 3 TeV.
- Bin uncertainty uncertainty almost not visible in log scale.
- So-called "tests of smoothness" have been performed to check the presence of steps or outliers in the final spectrum.

### Tests of smoothness [32]

$$\begin{split} \chi_n^2 &= \min_{b_i} \left[ (\mathbf{x} - \mathbf{y}_{b_i})^{\mathsf{T}} \, \mathbf{V}_{\mathbf{x}}^{-1} \left( \mathbf{x} - \mathbf{y}_{b_i} \right) \right] \quad \text{with} \quad y_{b_i}^j = \frac{1}{\Delta p_{\mathrm{T}}^j} \int_{p_{\mathrm{T}}^j} \exp\left( \sum_{i=0}^n b_i \, T_i \left( \log p_{\mathrm{T}} \right) \right) \mathrm{d} p_{\mathrm{T}} \\ &\longrightarrow \chi_6^2 \sim \mathrm{ndf} \text{ in all } y \text{ bins!} \end{split}$$

### Comparison



### Predictions

- NNLO with two scale choices obtained with NNLOJET [33, 34, 35].
  - $\longrightarrow$  Also statistically limited!

UH 15/16

**ICHEP** 

P Connor

Overview

Back-up

Comparison Summary &

### Comparison



### Predictions

- NNLO with two scale choices obtained with NNLOJET [33, 34, 35].
  - $\longrightarrow$  Also statistically limited!

■ NLO+NLL [36] with various global PDF [37, 38, 39, 40, 41] sets.

UH #15/16

**ICHEP** 

P. Connor

Overview

Back-up

Comparison Summary &

# **Summary & Conclusions**

Introduction

Data reductio

Results

Summary & Conclusions

Back-up

### **Summary & Conclusions**

The CMS Collaboration has produced two measurements of inclusive jet production in pp collisions at 13 TeV.

UH 16/16

Introduction

Data reductio

Results

Summary & Conclusions

Back-up

## **Summary & Conclusions**

- The CMS Collaboration has produced two measurements of **inclusive jet** production in *pp* collisions at 13 TeV.
- The experimental analysis includes corrections to the jet count, the jet energy, and the pile-up; all effects are corrected via the procedure of unfolding.

Introduction

Data reductior

Results

Summary & Conclusions

Back-up

## **Summary & Conclusions**

- The CMS Collaboration has produced two measurements of **inclusive jet** production in *pp* collisions at 13 TeV.
- The experimental analysis includes corrections to the jet count, the jet energy, and the pile-up; all effects are corrected via the procedure of unfolding.
- Tests of smoothness have been applied to the data at all steps of the analysis to preserve the quality of the data throughout the data reduction

UH 16/16

Introduction

Data reductio

Results

Summary & Conclusions

Back-up

## **Summary & Conclusions**

- The CMS Collaboration has produced two measurements of inclusive jet production in pp collisions at 13 TeV.
- The experimental analysis includes corrections to the jet count, the jet energy, and the pile-up; all effects are corrected via the procedure of unfolding.
- Tests of smoothness have been applied to the data at all steps of the analysis to preserve the quality of the data throughout the data reduction
- Data are compared to **FO** predictions at NLO+NLL and NNLO.

Introduction

Data reductio

Results

Summary & Conclusions

Back-up

## **Summary & Conclusions**

- The CMS Collaboration has produced two measurements of inclusive jet production in pp collisions at 13 TeV.
- The experimental analysis includes corrections to the jet count, the jet energy, and the pile-up; all effects are corrected via the procedure of unfolding.
- Tests of smoothness have been applied to the data at all steps of the analysis to preserve the quality of the data throughout the data reduction
- Data are compared to **FO** predictions at NLO+NLL and NNLO.

 $\longrightarrow$  The paper has been published in JHEP! [42]

UH 16/16

Introduction

Data reductior

Results

Summary & Conclusions

Back-up

## **Summary & Conclusions**

- The CMS Collaboration has produced two measurements of **inclusive jet** production in *pp* collisions at 13 TeV.
- The experimental analysis includes corrections to the jet count, the jet energy, and the pile-up; all effects are corrected via the procedure of unfolding.
- Tests of smoothness have been applied to the data at all steps of the analysis to preserve the quality of the data throughout the data reduction
- Data are compared to **FO** predictions at NLO+NLL and NNLO.

 $\longrightarrow$  The paper has been published in JHEP! [42]

# Grazie mille!

UH 16/16

# Back-up

### Acronyms I

Acronyms References Visiting card

P Connor

- AK4 anti  $k_T$  algorithm (R = 0.4). 16–18
- AK7 anti  $k_T$  algorithm (R = 0.7). 16–18
- ATLAS A Toroidal LHC ApparatuS. 9, 10
  - c.i. Contact Interactions. 4, 5
  - CHS Charged Hadron Subtraction. 12–15
  - CMS Compact Muon Solenoid. 9, 10, 16-18, 35-40
- ECAL Electromagnetic CALorimeter. 12-18
- EFT Effective Field Theory. 6-8
- EW Electroweak. 6-8
- FO fixed order. 35-40
- LHC Large Hadron Collider. 9, 10
- MB Minimum Bias. 21, 22
- ME Matrix Element. 12-15
- MET Missing Transverse Energy. 12–15

- NLL Next to Leading Logarithm. 6–8, 32, 33, 35–40
- NLO Next to Leading Order. 6-8, 32, 33, 35-40
- NNLO Next to Next to Leading Order. 6–8, 32, 33, 35–40
  - NP Non-Perturbative. 6-8
- PDF Parton Distribution Function. 4–10, 12–15, 32, 33
- PF Particle-Flow. 12-15
- PU pile-up. 12-15, 19-22
- PV Primary Vertex. 12-15
- QCD Quantum Chromodynamics. 4, 5, 35-40
- RM Response Matrix. 25, 26
- SF Scale Factor. 19, 20
- SM Standard Model. 6-8

UH 17/16

### **References I**

Acronyms References Visiting card

P Connor

CMS Collaboration and Thomas Mc Cauley. "Displays of an event with two jets with transverse momentum of more than 3 TeV as seen in the CMS detector". CMS Collection. 2021. URL: https://cds.cern.ch/record/2775841.

W.J. Stirling. Private communication. http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html. 2012.



John C. Collins, Davison E. Soper, and George F. Sterman. "Factorization of Hard Processes in QCD". In: Adv. Ser. Direct. High Energy Phys. 5 (1989), pp. 1–91. DOI: 10.1142/9789814503266\_0001. arXiv: hep-ph/0409313 [hep-ph].

- Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. "The anti-k<sub>t</sub> jet clustering algorithm". In: JHEP 04 (2008), p. 063. DOI: 10.1088/1126-6708/2008/04/063. arXiv: 0802.1189 [hep-ph].
- Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. "FastJet User Manual". In: Eur. Phys. J. C 72 (2012), p. 1896. DOI: 10.1140/epjc/s10052-012-1896-2. arXiv: 1111.6097 [hep-ph].



UH # 18/16

### **References II**

#### Acronyms References Visiting card

P Connor

Vardan Khachatryan et al. "Measurement of the inclusive jet cross section in pp collisions at  $\sqrt{s} = 2.76$  TeV". In: Eur. Phys. J. C 76 (2016), p. 265. DOI: 10.1140/epjc/s10052-016-4083-z. arXiv: 1512.06212 [hep-ex].

- Georges Aad et al. "Measurement of the inclusive jet cross-section in proton-proton collisions at  $\sqrt{s} = 7$  TeV using 4.5 fb<sup>-1</sup> of data with the ATLAS detector". In: JHEP 02 (2015). [Erratum: JHEP09,141(2015)], p. 153. DOI: 10.1007/JHEP02(2015)153. arXiv: 1410.8857 [hep-ex].
- Serguei Chatrchyan et al. "Measurements of Differential Jet Cross Sections in Proton-Proton Collisions at  $\sqrt{s} = 7$  TeV with the CMS Detector". In: Phys. Rev. D 87 (2013). [Erratum: JHEP09,141(2015)], p. 112002. DOI: 10.1103/PhysRevD.87.112002. arXiv: 1212.6660 [hep-ex].
- Serguei Chatrchyan et al. "Measurement of the Ratio of Inclusive Jet Cross Sections using the Anti- $k_T$  Algorithm with Radius Parameters R = 0.5 and 0.7 in pp Collisions at  $\sqrt{s} = 7$  TeV". In: Phys. Rev. D 90 (2014), p. 072006. DOI: 10.1103/PhysRevD.90.072006. arXiv: 1406.0324 [hep-ex].
- Morad Aaboud et al. "Measurement of the inclusive jet cross-sections in proton-proton collisions at  $\sqrt{s} = 8$  TeV with the ATLAS detector". In: JHEP 09 (2017), p. 020. DOI: 10.1007/JHEP09 (2017) 020. arXiv: 1706.03192 [hep-ex].

UH 19/16

### **References III**

#### Acronyms References Visiting card

P Connor

- Vardan Khachatryan et al. "Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at  $\sqrt{s} = 8$  TeV and cross section ratios to 2.76 and 7 TeV". In: JHEP 03 (2017), p. 156. DOI: 10.1007/JHEP03(2017)156. arXiv: 1609.05331 [hep-ex].
- M. Aaboud et al. "Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector". In: JHEP 05 (2018), p. 195. DOI: 10.1007/JHEP05(2018)195. arXiv: 1711.02692 [hep-ex].
- Vardan Khachatryan et al. "Measurement of the double-differential inclusive jet cross section in proton-proton collisions at  $\sqrt{s} = 13$  TeV". In: Eur. Phys. J. C 76 (2016), p. 451. DOI: 10.1140/epjc/s10052-016-4286-3. arXiv: 1605.04436 [hep-ex].
- T

Tie-Jiun Hou et al. "New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC". In: Phys. Rev. D 103 (1 Jan. 2021), p. 014013. DOI: 10.1103/PhysRevD.103.014013. URL: https://link.aps.org/doi/10.1103/PhysRevD.103.014013.



UH

20/16

L. A. Harland-Lang, A. D. Martin, and R. S. Thorne. "The impact of LHC jet data on the MMHT PDF fit at NNLO". In: The European Physical Journal C 78.3 (Mar. 2018). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-018-5710-7. URL: http://dx.doi.org/10.1140/epjc/s10052-018-5710-7.

### **References IV**

Acronyms References Visiting card

ICHEP P Connor

> Rabah Abdul Khalek et al. "Phenomenology of NNLO jet production at the LHC and its impact on parton distributions". In: The European Physical Journal C 80.8 (Aug. 2020). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-020-8328-5. URL: http://dx.doi.org/10.1140/epjc/s10052-020-8328-5.

- Vardan Khachatryan et al. "Event generator tunes obtained from underlying event and multiparton scattering measurements". In: **Eur. Phys. J. C** 76 (2016), p. 155. DOI: 10.1140/epjc/s10052-016-3988-x. arXiv: 1512.00815 [hep-ex].
- Torbjörn Sjöstrand et al. "An introduction to PYTHIA 8.2". In: Comput. Phys. Commun. 191 (2015), p. 159. DOI: 10.1016/j.cpc.2015.01.024. arXiv: 1410.3012 [hep-ph].



Richard D. Ball et al. "Parton distributions with LHC data". In: Nucl. Phys. B 867 (2013), p. 244. DOI: 10.1016/j.nuclphysb.2012.10.003. arXiv: 1207.1303 [hep-ph].



Johan Alwall et al. "MadGraph 5 : going beyond". In: JHEP 06 (2011), p. 128. DOI: 10.1007/JHEP06(2011)128. arXiv: 1106.0522 [hep-ph].



J. Alwall et al. "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations". In: JHEP 07 (2014), p. 079. DOI: 10.1007/JHEP07(2014)079. arXiv: 1405.0301 [hep-ph].

UH 21/16

### **References V**

Acronyms References Visiting card

P Connor

M. Bahr et al. "Herwig++ physics and manual". In: Eur. Phys. J. C 58 (2008), p. 639. DOI: 10.1140/epjc/s10052-008-0798-9. arXiv: 0803.0883 [hep-ph].

J. Pumplin et al. "New generation of parton distributions with uncertainties from global QCD analysis". In: JHEP 07 (2002), p. 012. DOI: 10.1088/1126-6708/2002/07/012.

- arXiv: hep-ph/0201195 [hep-ph]. Vardan Khachatryan et al. "The CMS trigger system". In: JINST 12 (2017), P01020. DOI: 10.1088/1748-0221/12/01/P01020. arXiv: 1609.02366 [physics.ins-det].
- Vardan Khachatryan et al. "Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV". In: JINST 12 (2017), P02014. DOI: 10.1088/1748-0221/12/02/P02014. arXiv: 1607.03663 [hep-ex].



- Jet algorithms performance in 13 TeV data. CMS Physics Analysis Summary CMS-PAS-JME-16-003. 2017. URL: https://cdsweb.cern.ch/record/2256875.
- Stefan Schmitt. "TUnfold: an algorithm for correcting migration effects in high energy physics". In: JINST 7 (2012), T10003. DOI: 10.1088/1748-0221/7/10/T10003. arXiv: 1205.6201 [physics.data-an].

UH 22/16

### **References VI**

Acronyms References Visiting card

P Connor

- Stefan Schmitt. "Data Unfolding Methods in High Energy Physics". In: EPJ Web Conf. 137 (2017), p. 11008. DOI: 10.1051/epjconf/201713711008. arXiv: 1611.01927 [physics.data-an].
- G. D'Agostini. "A Multidimensional unfolding method based on Bayes' theorem". In: Nucl. Instrum. Meth. A362 (1995), pp. 487–498. DOI: 10.1016/0168-9002(95)00274-X.
- G. D'Agostini. "Improved iterative Bayesian unfolding". In: ArXiv e-prints (Oct. 2010). arXiv: 1010.0632 [physics.data-an].
- Patrick L. S. Connor and Radek Žlebčík. "Step: a tool to perform tests of smoothness on differential distributions based on expansion of polynomials". In: (Nov. 2021). arXiv: 2111.09968 [hep-ph].
  - J Currie, E. W. N. Glover, and J Pires. "Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC". In: Phys. Rev. Lett. 118 (2017), p. 072002. DOI: 10.1103/PhysRevLett.118.072002. arXiv: 1611.01460 [hep-ph].



James Currie et al. "Single Jet Inclusive Production for the Individual Jet  $p_T$  Scale Choice at the LHC". In: Acta Phys. Polon. B 48 (2017), p. 955. DOI: 10.5506/APhysPolB.48.955. arXiv: 1704.00923 [hep-ph].

UH 23/16

### **References VII**

#### Acronyms References Visiting card

UH

24/16

Ĥ

P Connor

Thomas Gehrmann et al. "Jet cross sections and transverse momentum distributions with NNLOJET". In: **PoS** RADCOR2017 (2018). Ed. by Andre Hoang and Carsten Schneider, p. 074. DOI: 10.22323/1.290.0074. arXiv: 1801.06415 [hep-ph].

- Xiaohui Liu, Sven-Olaf Moch, and Felix Ringer. "Phenomenology of single-inclusive jet production with jet radius and threshold resummation". In: Phys. Rev. D 97 (2018), p. 056026. DOI: 10.1103/PhysRevD.97.056026. arXiv: 1801.07284 [hep-ph].
- H. Abramowicz et al. "Combination of measurements of inclusive deep inelastic e<sup>±</sup>p scattering cross sections and QCD analysis of HERA data". In: Eur. Phys. J. C 75 (2015), p. 580. DOI: 10.1140/epjc/s10052-015-3710-4. arXiv: 1506.06042 [hep-ex].
- Sayipjamal Dulat et al. "New parton distribution functions from a global analysis of quantum chromodynamics". In: Phys. Rev. D 93 (2016), p. 033006. DOI: 10.1103/PhysRevD.93.033006. arXiv: 1506.07443 [hep-ph].
- Richard D. Ball et al. "Parton distributions from high-precision collider data". In: Eur. Phys. J. C 77 (2017), p. 663. DOI: 10.1140/epjc/s10052-017-5199-5. arXiv: 1706.00428 [hep-ph].
- L. A. Harland-Lang et al. "Parton distributions in the LHC era: MMHT 2014 PDFs". In: Eur. Phys. J. C 75 (2015), p. 204. DOI: 10.1140/epjc/s10052-015-3397-6. arXiv: 1412.3989 [hep-ph].

### **References VIII**

Acronyms References Visiting card

ICHEP P. Connor

S. Alekhin et al. "Parton distribution functions,  $\alpha_s$ , and heavy-quark masses for LHC Run II". In: Phys. Rev. D 96 (2017), p. 014011. DOI: 10.1103/PhysRevD.96.014011. arXiv: 1701.05838 [hep-ph].

Armen Tumasyan et al. "Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at  $\sqrt{s} = 13$  TeV". In: JHEP 02 (2022), p. 142. DOI: 10.1007/JHEP02(2022)142. arXiv: 2111.10431 [hep-ex].

UH Ĥ 25/16

Acronyms References Visiting card

# Patrick L.S. CONNOR

patrick.connor@desy.de Universität Hamburg https://www.desy.de/~connorpa

MIN-Fakultät Institut für Experimentalphysik Tel.: +49 40 8998-82165 Geb.: DESY Campus 68/121

Center for Data and Computing in natural Sciences *Tel.*: +49 42838-6109 *Geb.*: Notkestraße 9



UH 26/16