

Explainable machine learning of parton shower mechanisms

Yue Shi Lai^a, Duff Neill^b, Mateusz Płoskoń^a, Felix Ringer^c

- ^a Lawrence Berkeley National Laboratory, Nuclear Science Division
- ^b Los Alamos National Laboratory, Theoretical Division
- ^c Stony Brook University, C. N. Yang Institute for Theoretical Physics

ICHEP 2022

YSL, D. Neill, M. Płoskoń, F. Ringer, Phys. Lett. B 829, 137055 (2022) [arXiv:2012.06582 [hep-ph]]

(Yue Shi Lai^a, Duff Neill^b, Mateusz Płoskoń^a, Felix Rin

Introduction

- Parton shower (and fragmentation function) most challenging uncertgainties in QCD modeling and measurement
- Parton showers and shower-like evolution are being pushed towards perturbative accuracy

(e.g. D. Neill, F. Ringer, N. Sato arXiv:2008.09532, D. Neill, arXiv:2010.02934; M. Ebert, I. Stewart, Y. Zhao, PRD 99, 034505 (2019))

- Today's challenges for parton shower:
 - Perturbative accuracy
 - How to interface with non-perturbative effects
 - Modification in (hot/cold) nuclear environment

(4 回 ト 4 ヨ ト 4 ヨ ト

 Machine learning parton showers on experimental data can potentially yield insights difficult to arrive at from first principles

Adapted from O. Biebel, Phys. Rep. 3, 165 (2001)

Introduction

- Parton shower (and fragmentation function) most challenging uncertgainties in QCD modeling and measurement
- Parton showers and shower-like evolution are being pushed towards perturbative accuracy

(e.g. D. Neill, F. Ringer, N. Sato arXiv:2008.09532, D. Neill, arXiv:2010.02934; M. Ebert, I. Stewart, Y. Zhao, PRD 99, 034505 (2019))

- Today's challenges for parton shower:
 - Perturbative accuracy
 - How to interface with non-perturbative effects
 - Modification in (hot/cold) nuclear environment

(4 回 ト 4 ヨ ト 4 ヨ ト

 Machine learning parton showers on experimental data can potentially yield insights difficult to arrive at from first principles

Adapted from O. Biebel, Phys. Rep. 3, 165 (2001)

White box machine learning

- For us physicists, ultimate goal is to understand the mechanism
- "White box" because we aim for algorithmic transparency not a post-hoc explaination of the individual ("local") decision
- Algorithmic transparency cannot be easily added, unlike post-hoc methods

Generative Adversarial Networks

- Emulate the natural distribution by minimizing an overarching "loss" between generate data to real data
- Ensures a model is trainable using only data
- Two neural networks: the generator ("forger") and discriminator ("detective")
- Simultaneously optimize both, causing both to be in competition with each other (Nash equilibrium)

https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-p

- Why?
 - The generator can non-deterministically produce splitting as it sees fit
 - Only require that no analysis exists that can (easily) distinguish the generator output from "reality" (the discriminator mostly fails)

Past Results

- LA-GAN, L. de Oliveira, M. Paganini, B. Nachman (Comput. Softw. Big Sci. 1, 4, 2017; arXiv:1701.05927)
 - Convolutional neural network black box
 - "Jet images" (not individual partons/particles)
- JUNIPR, A. Andreassen, I. Feige, C. Frye, M. Schwartz EPJC 79 102, 2019; arXiv:1804.09720)
 - Not actual showers, but jet clustering hierachy

- All past results are black boxes ⇒ no possibility to extract knowledge
- Lack of physics-motivated NN ⇒ no access to the parton evolution

1 First NN parton shower with physics-motivated architecture

- Fully randomized splitting of individual partons
- Recurrents splitting using the same underlying kernel
- Efficient parallel execution on a GPU
 - Mean number of splittings: ≈ 90
 - 20k–30k showers tree running in parallel (per 24 GB RAM)
 - $\blacksquare~$ Execution time $\approx 95 \pm 4 \, \mu s/full$ shower
- 2 First non-black-box ML parton shower
 - First NN shower where the internal/per-step splitting *z* and θ can be plotted
- ⇒ Possibly the first non-black-box GAN?

A (10) A (10)

Shower Implementation

- Time-ordered $1 \rightarrow 2$ DGLAP shower
- Shower from initial p_T down to Λ_{QCD}
- Probability of advancing time Δ*t* per split:

$$p(\Delta t) = \exp\left(-\Delta t \sum_{i \in \text{flavor}} \int_{\epsilon}^{1-\epsilon} dz P_i(z)\right) \quad ($$

- z is sampled from DGLAP $P_{i \rightarrow jk}(z)$ (currently *i*, *j*, *k* are gluons)
- QCD evolution of time vs. θ:

$$t(Q,\theta) = \int_{Q\tan(\pi/2)}^{Q\tan(\theta/2)} \frac{dt'}{t'} \frac{\alpha_{S}(t')}{\pi}$$

(2)

Implementation as NN (Generator)

- Operating on $p^+ = \frac{1}{\sqrt{2}}(p^0 + p^z)$ and unit 3-momentum vector
- Recursively splits by the same neural network kernel
- Batched random splitting in parallel by scatter-gather
- Termination by speculative execution

Implementation as NN (Discriminator, Training)

- Deep Sets, M. Zaheer et al., arXiv:1703.06114
- General form of permutation-invariant function

No access to the intermediate shower

https://www.inference.vc/content/images/2019/02/Architecture.png

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- "Conditional GAN": original parton + noise as input (M. Mirza, S. Osindero, "Conditional generative adversarial nets", arXiv:1411.1784 [cs.LG])
- Initialization: generator is pre-trained to have reasonable z and θ distribution
- Modified "vanilla"/DCGAN training:
 - Asynchronous generator/discriminator updates (update generator only if confident in the discriminator)
 - Test that an optimization step really improved
- Result shown with 200 < Q < 800 GeV, ϵ = 0.02 and after 500 epochs

Final Z, Θ spectrum

- PS: Original DGLAP parton shower
- Final distribution agrees exceedingly well with PS
- About 2–3 orders of magnitude agreement

(Internal) z, θ spectrum

z follows the DGLAP shape within $z_{\text{cutoff}} = 0.03$

- θ for the first 4 steps also follow parton shower
- At large θ the function becomes too stiff for the size of the neural network we are using

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

→

(Internal) Q dependent θ spectrum

- Even Q dependent behavior is modeled correctly in the neural network
- Large splits are also reasonable

- A first feasibility demonstration that white-box (x)Al can successfully learn the underlying physics of the parton shower
- Constrained GAN is capable of learning the DGLAP parton shower without seeing the individual splittings
- Work is starting point to eventually train NN directly on experimental data, extracting physics from full event information
- Future direction:
 - Inclusion of fragmentation into hadrons
 - Study of collective effects, hot medium effects in heavy-ion and cold nuclear effects at electron-ion collider

イロト イポト イヨト イヨト 二日