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Introduction

m Parton shower (and fragmentation function) most challenging uncertgainties
in QCD modeling and measurement

m Parton showers and shower-like evolution are being pushed towards
perturbative accuracy
(e.g. D. Neill, F. Ringer, N. Sato arXiv:2008.09532, D. Neill, arXiv:2010.02934; M. Ebert, |. Stewart, Y.
Zhao, PRD 99, 034505 (2019))
)
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Adapted from O. Biebel, Phys. Rep. 3, 165 (2001)

m Machine learning parton showers on experimental data can potentially yield
insights difficult to arrive at from first principles
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non-perturbative perturbative perturbative non-perturbative

fi(@i,ur) pdf dé  hard x-sec. parton shower hadronization
Adapted from O. Biebel, Phys. Rep. 3, 165 (2001)

m Machine learning parton showers on experimental data can potentially yield
insights difficult to arrive at from first principles
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White box machine learning
- —> Prediction/Generation

-~ = Prediction/Generation
+ Underlying mechanism

m For us physicists, ultimate goal is to understand the mechanism

m “White box” because we aim for algorithmic transparency — not a post-hoc
explaination of the individual (“local”) decision

m Algorithmic transparency cannot be easily added, unlike post-hoc methods
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Generative Adversarial Networks

generated distribution true data distribution

m Emulate the natural distribution by
minimizing an overarching “loss” it gaussen
between generate data to real data O

B(x)

generative
model

(neural net) h

< Jloss| 7

m Ensures a model is trainable using only
data

image space image space

m Two neural networks: the generator
(“forger”) and discriminator (“detective”)

m Simultaneously optimize both, causing
both to be in competition with each
other (Nash equilibrium)

R: Real Data G: Generator (Forger) I: Input for Generator

https://medium.com/@devnag/generative- adversarial- networks-gans- in-50- lines- of- code-y

m Why?
m The generator can non-deterministically produce splitting as it sees fit
m Only require that no analysis exists that can (easily) distinguish the generator
output from “reality” (the discriminator mostly fails)
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https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f

Past Results

m LA-GAN, L. de Oliveira, M. Paganini, B.
Nachman (Comput. Softw. Big Sci. 1, 4,
2017; arXiv:1701.05927)

m Convolutional neural network - black
box

m “Jetimages” (not individual
partons/particles)

m JUNIPR, A. Andreassen, |. Feige, C. Frye,
M. Schwartz EPJC 79 102, 2019;
arXiv:1804.09720)

m Not actual showers, but jet clustering
hierachy

m All past results are black boxes = no possibility to extract knowledge
m Lack of physics-motivated NN = no access to the parton evolution
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Our Contributions

H First NN parton shower with physics-motivated architecture

m Fully randomized splitting of individual partons

m Recurrents splitting using the same underlying kernel
m Efficient parallel execution on a GPU

B Mean number of splittings: =~ 90
B 20k-30k showers tree running in parallel (per 24 GB RAM)
B Execution time =~ 95 =+ 4 ps/full shower

First non-black-box ML parton shower
m First NN shower where the internal/per-step splitting z and 6 can be plotted
= Possibly the first non-black-box GAN?
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Shower Implementation

m Time-ordered 1 — 2 DGLAP shower
m Shower from initial pr down to Aqcp
m Probability of advancing time At per split:

p(At) = exp (—At > /1_€dzP,»(z)) M

icflavor ¥ €

m zis sampled from DGLAP Pi_j(z) (currently i, j, k

are gluons)
pT
m QCD evolution of time vs. 6:
DGLAP
Qtan(6/2) dar a<(t
t(Q,6) = / —,ﬁ )
Qtan(n/2) U T A
QCD
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Implementation as NN (Generator)

Q 01 1 r o
m Operatingonp® f(p + p?) and unit —

3-momentum vector %

. . —]
m Recursively splits by the same neural network @ X
kernel

m Batched random splitting in parallel by o <
scatter-gather

"\

' ‘ ‘ ‘ Scattering Gathering
m Termination by speculatlve execution

Correct Path

>>2>>2>2>2> Retire

Speculative Prediction

>>>>>>>

Reading sequentially
T EEEEE Squash Witing randomty Wring sty

Mis-predicted Path (Transient Execution) (S. Constable, IEEE SecDev 2020) (S. Jones, GIC 2017)
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Implementation as NN (Discriminator, Training)

Input Output
m Deep Sets, M. Zaheer et

al., arXiv:1703.06114 ||_|__ - @ﬂ ﬁ‘ B @ﬂmwm
m General form of a4 o

).
. . . \tﬁ(‘ ) Z
permutation-invariant .
function XeRM RNM RY R

m No access to the
intermediate shower

https://www.inference.vc/content/images/2019/02/Architecture.png

m “Conditional GAN": original parton + noise as input (M. Mirza, S. Osindero,
“Conditional generative adversarial nets’, arXiv:1411.1784 [cs.LG])
m Initialization: generator is pre-trained to have reasonable z and 6 distribution

m Modified “vanilla”/DCGAN training:

m Asynchronous generator/discriminator updates (update generator only if
confident in the discriminator)
m Test that an optimization step really improved

m Result shown with 200 < Q < 800 GeV, ¢ = 0.02 and after 500 epochs
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Final Z, © spectrum
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m PS: Original DGLAP parton shower
m Final distribution agrees exceedingly well with PS
m About 2-3 orders of magnitude agreement
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(Internal) z, 6 spectrum
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m z follows the DGLAP shape within z.yf = 0.03
m O for the first 4 steps also follow parton shower

m At large 6 the function becomes too stiff for the size of the neural network we

are using
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(Internal) Q dependent 6 spectrum
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m Even Q dependent behavior is modeled correctly in the neural network
m Large splits are also reasonable
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Summary

m A first feasibility demonstration that white-box (x)Al can successfully learn the
underlying physics of the parton shower

m Constrained GAN is capable of learning the DGLAP parton shower without
seeing the individual splittings

m Work is starting point to eventually train NN directly on experimental data,
extracting physics from full event information

m Future direction:

m Inclusion of fragmentation into hadrons
m Study of collective effects, hot medium effects in heavy-ion and cold nuclear
effects at electron-ion collider
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