NLL accurate PanScales showers for hadron collisions

Silvia Ferrario Ravasio

International Conference on High Energy Physics (ICHEP 2022)

European Research Council

Established by the European Commission

Based on:

PanScales showers for hadron collisions: a fixed-order study [arXiv:2205.02237], **PanScales showers for hadron collisions: all-orders validation [in preparation]** with M. van Beekveld, K. Hamilton, G. Salam, A. Soto-Ontoso, G. Soyez, R. Verheyen

Bologna, 8 July 2022

Shower Monte Carlo Event Generators

to realistically describe complex collider events

- tools for collider phenomenology
- component, which translates in large systematic uncertainties \rightarrow let's improve it!

• Parton Showers are at the core of Shower Monte Carlo Generators, which contain all the ingredients

• Their ability to reproduce much of the data from LHC and its predecessors makes them indispensable

• Their flexibility comes at a cost of an unknown or poor formal accuracy, especially of the Parton Shower

Why do we need to improve Parton Showers?

The dominant uncertainty in the Jet Energy Scale determination comes from different showers' modelling (and not from the hadronisation!)

 \rightarrow It enters all the measurements involving jets

 \rightarrow Contributes to the 70% of uncertainty of precise top mass determinations

Source	Uncertainty [GeV]
Trigger	0.02
Lepton ident./isolation	0.02
Muon momentum scale	0.03
Electron momentum scale	0.10
Jet energy scale	0.57
Jet energy resolution	0.09
b tagging	0.12
Pileup	0.09
tŧ ME scale	0.18
tW ME scale	0.02
DY ME scale	0.06
NLO generator	0.14
PDF	0.05
$\sigma_{ m tar t}$	0.09
Top quark $p_{\rm T}$	0.04
ME/PS matching	0.16 V
UE tune	0.03
tt ISR scale	0.16
tW ISR scale	0.02
t ī FSR scale	0.07
tW FSR scale	0.02
b quark fragmentation	0.11
b hadron BF	0.07
Colour reconnection	0.17
DY background	0.24
tW background	0.13
Diboson background	0.02
W+jets background	0.04
t ī background	0.02
Statistical	0.14
MC statistical	0.36
Total <i>m</i> ^{MC} uncertainty	$+0.68 \\ -0.73$

Top quark mass from CMS, 2019 [Eur.Phys.J.C 79 (2019) 5, 368] $m_t = 172.33$ ± 0.14 (stat) +0.66 -0.72(syst) GeV

How do we define how good is a Parton Shower?

- The aim of a Parton Shower is to evolve the system across a large span of scale: large logarithms L of the ratios of the scales involved in the process arise during this evolution
- We can use analytic resummation to classify the logarithmic accuracy of a Shower

$$\Sigma(\log O < L) = \exp\left(\underbrace{Lg_{LL}(\alpha_s L)}_{\text{leading logs}} + \underbrace{g_{\text{NLL}}(\alpha_s L)}_{\text{next-to LL}} + \dots\right)$$

E.g.
$$O = \frac{p_{\perp,Z}}{m_Z}$$
 and $p_{\perp,Z} \approx 1$ GeV, $|\alpha_s L| = m_Z$

0.55: Next-to-Leading Logarithms are $\mathcal{O}(1)$

How do we define how good is a Parton Shower?

- The aim of a Parton Shower is to evolve the system across a large span of scale: large logarithms L of the ratios of the scales involved in the process arise during this evolution
- We can use analytic resummation to classify the logarithmic accuracy of a Shower

$$\Sigma(\log O < L) = \exp\left(\begin{array}{c} Lg_{\text{LL}}(\alpha_s L) + g_{\text{NLL}}(\alpha_s L) + \dots\right)$$

leading logs next-to LL

E.g.
$$O = \frac{p_{\perp,Z}}{m_Z}$$
 and $p_{\perp,Z} \approx 1$ GeV, $|\alpha_s L| =$
Are the most widely used showers

• (Abridged) PanScales criteria to assess NLL accuracy:

0.55: Next-to-Leading Logarithms are $\mathcal{O}(1)$

NLL? If no, can we build NLL showers?

A. Fixed-order: emissions widely separated in angle, are independent from each other **B.** All-orders: the showers reproduces results from analytic resummation at NLL

Dipole showers in a nutshell

• Parton showers describe the energy degradation of hard partons via a subsequent chain of soft (small

energy) and collinear (small θ) emissions

• The most popular showers are <u>dipole showers</u>. • New partons are emitted from a dipole, which is a pair of colour-connected partons

Dipole showers in a nutshell

• The original dipole leg closer in angle (in the dipole frame) to the new emission takes the p_T recoil, and is tagged as emitter

$$p_{3} = z_{1}\tilde{p}_{1} + z_{2}\tilde{p}_{2} + k_{\perp}$$

$$P_{1,2\to 1,2,3} \approx P_{1\to 1,3}(z_{1})\Theta(\theta_{13}^{dip} > \theta_{23}^{dip}) + P_{2\to 2,3}$$

1 is the emitter

• Parton showers describe the energy degradation of hard partons via a subsequent chain of soft (small energy) and collinear (small θ) emissions • The most popular showers are <u>dipole showers</u>. • New partons are emitted from a dipole, which is a pair of colour-connected partons

Dipole showers in a nutshell

• The original dipole leg closer in angle (in the dipole frame) to the new emission takes the p_T recoil, and is tagged as emitter

$$p_{3} = z_{1}\tilde{p}_{1} + z_{2}\tilde{p}_{2} + k_{\perp}$$

$$P_{1,2\to1,2,3} \approx P_{1\to1,3}(z_{1})\Theta(\theta_{13}^{dip} > \theta_{23}^{dip}) + P_{2\to2,3}$$
1 is the emitter **2**

order (NLO or NNLO) calculations, as we can just correct the first (=hardest)

 Parton showers describe the energy degradation of hard partons via a subsequent chain of soft (small energy) and collinear (small θ) emissions • The most popular showers are <u>dipole showers</u>. • New partons are emitted from a dipole, which is a pair of colour-connected partons

• Emissions are ordered in transverse momentum (or virtuality): this simplifies matching with higher

- the incoming parton (q_0)
- initial-state emission

- Initial-state radiation: we cannot assign the p_T recoil to the incoming parton
- In $pp \rightarrow Z$ the Z boson must absorb the p_T recoil for each initial-state emission
- But in common dipole showers, emissions from Initial-Final dipoles always make the final state leg recoil!
- Known to yield wrong $p_{T,Z}$ at NLL! [Parisi, Petronzio NPB 154 (1979) 427-440, Nagy, Soper JHEP 03 (2010) 097]

• Initial-state radiation: we cannot assign the p_T recoil to the incoming parton

known to yield wrong $p_{T,Z}$ at NLL! [Parisi, Petronzio NPB 154 (1979) 427-440, Nagy, Soper JHEP 03 (2010) 097]

Possible solution: assign the p_T recoil to the incoming parton, and then boost everything to realign it with the beam axis [Platzer, Gieseke JHEP 01 (2011) 024]

 p_i

the **first** emission's momentum?

Soyez, Verheyen, arXiv:2205.02237

Dipole- k_t (global)

NLL PanScales showers for hadron collision: PanLocal

- Kinematic map with the global boost for ISR

PanLocal for FSR: Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez, Phys.Rev.Lett. 125 (2020) 5, 052002

NLL PanScales showers for hadron collision: PanLocal

- Kinematic map with the global boost for ISR

PanLocal for FSR: Dasgupta, Dreyer, Hamilton, Monni,

NLL PanScales showers for hadron collision: PanLocal

- Kinematic map with the global boost for ISR

- ... but we restore to p_T ordering for very collinear

PanLocal for FSR: Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez, Phys.Rev.Lett. 125 (2020) 5, 052002

NLL PanScales showers for hadron collision: PanGlobal

- The p_T recoil is always taken by the Z boson: no

PanGlobal for FSR: Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez, Phys.Rev.Lett. 125 (2020) 5, 052002

Are we sure PanScales showers are NLL for $p_{T,Z}$?

 $\Sigma = \exp\left(Lg_{LL}(\alpha_s L) + g_{NLL}(\alpha_s L) + \alpha_s g_{NNLL}(\alpha_s L) + \dots\right)$ WG NEED TO EXTRACT ONLY THE NUL PART! HOW!?

van Beekveld, S.F.R., Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, in preparation

Are we sure PanScales showers are NLL for event shapes?

We also tested particle multiplicities, central jet vetos, and other 6 event shapes

Conclusions and outlook

- PanScales: a project to bring understanding & log accuracy to parton showers NLL accuracy has been achieved for e⁺e⁻ and colour singlet production in hadron
- **collisions** via revisiting:

 - 1. Interplay between kinematic mapping and ordering scale 2. Assignment of colour (not discussed here, [JHEP 03 (2021) 041, 041 for FSR, arXiv:2205.02237 for ISR]
 - 3. Spin correlations (not discussed here, [Eur.Phys.J.C 81 (2021) 8, 681 and JHEP 03 (2022) 193 for FSR, arXiv:2205.02237 for ISR])
- We devised a family of NLL showers: differences can be used to assess uncertainties Next steps include (not in order of priority):
- - Extension of showers to more complex processes, i.e. Z+jet and dijets
 - Matching to hard matrix elements
 - Interface to Pythia to include soft physics effects (e.g. hadronisation)
 - Heavy quarks
 - NNLL

Are we sure PanScales showers are NLL for $p_{T,Z}$?

Soyez, Verheyen, in preparation

