# High-precision QCD physics at FCC-ee

Francesco Giuli (on behalf of the FCC Collaboration)

XLI International Conference of High Energy Physics Bologna, Italy 07/07/2022





#### QCD, a key ingredient at future colliders

- $\succ$  QCD is crucial for many *ee*, *pp* measurements:
- > High-precision  $\alpha_s$ : affects all x-sections & decays (Higgs, top, etc.)
- > N<sup>n</sup>LO corrections, N<sup>n</sup>LL resummations: affects all pQCD x-sections & decays
- High-precision PDFs: affects all precision W,Z,H measurements & all searches in pp collisions
- Heavy-Quark/Light-Quark/Gluon separation (jet substructure, boosted topologies, etc.): needed for all precision SM measurement &BSM searches with jets in the final jets
- Semihard QCD (low-x saturation, multiple parton interactions, etc.): significant pQCD x-sections at FCC-hh
- Non-perturbative QCD: affects final states with jets -> colour reconnection, parton hadronization, etc.

### **Precision QCD in e^+e^- collisions**

 $\geq e^+e^-$  collisions provide an extremely clean environment with fully-controlled initial state to probe quark and gluons dynamics very precisely



Advantages compared to *pp* collisions:

- QED initial state with known kinematics
- Controlled QCD radiation (final state)
- Well-defined quarks and gluon jets
- Smaller non-pQCD uncertainties (no PDFs, no QCD underlying events, etc.)
- Direct clean parton fragmentation and hadronization
- > QCD physics in  $\gamma\gamma$  collisions



### QCD coupling $\alpha_S$

Currently determined by comparing 7 experimental observables to pQCD NNLO or N<sup>3</sup>LO predictions, plus global average at the Z pole scale



### $\alpha_S$ from hadronic $\tau$ -lepton decays

 $\succ \text{ Computed at N}^{3}\text{LO: } R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^{-} \to \nu_{\tau} e^{-} \bar{\nu}_{e})} = S_{\text{EW}} N_{C} \left(1 + \sum_{n=1}^{4} c_{n} \left(\frac{\alpha_{s}}{\pi}\right)^{n} + \mathcal{O}(\alpha_{s}^{5}) + \delta_{\text{np}}\right)$ 

> Experimentally we have  $R_{\tau,exp} = 3.4697 \pm 0.0080 \ (\pm 0.23\%)$ 



DIS202

- Theory: better understanding of FOPT vs CIPT differences & need of N<sup>4</sup>LO
- Better spectral functions needed (better precision)
- > Higher statistics:  $\mathcal{O}(10^{11})$  from  $Z \rightarrow \tau^+ \tau^-$  at FCC-ee(90)
- Extract the  $\tau$  width from the ultraprecise measurement of its lifetime

#### 07/07/22

## $\alpha_s$ from $e^+e^-$ event shapes and jet rates

- Computed at N<sup>2,3</sup>LO+N(N)LL accuracy
- Experimental observables: Thrust, jet shapes, C-parameter, n-jet cross sections
- Results sensitive to non-pQCD e.g. hadronization accounted for via MCs or analytically

```
\alpha_{s}(m_{z}) = 0.1171 \pm 0.027 (\pm 2.6\%)
```

 $\delta \alpha_{s} | \alpha_{s} < 1\%$ 

DIS2022

#### > What next?

- > FCC- $e^+e^-$ : Lower  $\sqrt{s}$  (ISR) for shapes, higher  $\sqrt{s}$  for jet rates
- Theory: Improved NN(N) # resummed calculations for rates, hadronization for shapes



### $\alpha_s$ from hadronic Z decays (FCC-ee)

- >  $\alpha_s$  extracted at N<sup>3</sup>LO from:
  - Combined fit of 3 Z pseudo observables
  - > Full SM fit (with  $\alpha_s$  free parameter)

#### > At FCC-ee:

- Huge Z pole statistics (x10<sup>5</sup> LEP)
- Exquisite systematic precision (stat. uncertainties much smaller)

- > Theory uncertainties reduced by a factor of 4 computing missing  $\alpha_S^5, \alpha^3, \alpha \alpha_S^2$  and  $\alpha^2 \alpha_s$  terms
- > 20 times times better precision than today:  $\frac{\delta \alpha_S}{\alpha_S} \sim \pm 0.2\%$  (tot),  $\pm 0.1\%$  (exp)

• The W and Z hadronic widths :

$$\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(Q) = \Gamma_{\mathrm{W,Z}}^{\mathrm{Born}} \left( 1 + \sum_{i=1}^{4} a_i(Q) \left( \frac{\alpha_S(Q)}{\pi} \right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{EW}} + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}} \right)$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathbf{R}_{\mathbf{W},\mathbf{Z}}(Q) = \frac{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{lep}}(Q)} = \mathbf{R}_{\mathbf{W},\mathbf{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

 $\bullet$  In the Z boson case, the hadronic cross section at the resonance peak in  $e^+e^-$  :



### $\alpha_s$ from hadronic W decays (FCC-ee)

- $\succ \alpha_{\rm S}$  extracted from N<sup>3</sup>LO fit of combined  $\Gamma_W, R_W$ W pseudo observables:
- The W and Z hadronic widths :

$$\Gamma^{
m had}_{
m W,Z}(Q) = \Gamma^{
m Born}_{
m W,Z} \left( 1 + \sum_{i=1}^{4} a_i(Q) \left( rac{lpha_S(Q)}{\pi} 
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{
m EW} + \delta_{
m mix} + \delta_{
m np} 
ight)$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathrm{R}_{\mathrm{W},\mathrm{Z}}(Q) = \frac{\Gamma^{\mathrm{had}}_{\mathrm{W},\mathrm{Z}}(Q)}{\Gamma^{\mathrm{lep}}_{\mathrm{W},\mathrm{Z}}(Q)} = \mathrm{R}^{\mathrm{EW}}_{\mathrm{W},\mathrm{Z}}\left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

#### At FCC-ee:

- Huge W pole statistics (x10<sup>4</sup> LEP-2)
- Exquisite systematic precision (stat. uncertainties much smaller)

 $\Gamma_{\rm W}^{\rm tot} = 2088.0 \pm 1.2 \,\,{\rm MeV}$ 

 $R_W = 2.08000 \pm 0.00008$ 

 $m_{\rm W} = 80.3800 \pm 0.0005 \, {\rm GeV}$ 

 $|V_{cs}| = 0.97359 \pm 0.00010 \leftarrow O(10^{12}) D$  mesons

- Theory uncertainties reduced by a factor of 10 computing missing  $\alpha_s^5$ ,  $\alpha^2$ ,  $\alpha^3$ ,  $\alpha \alpha_s^2$  and  $\alpha^2 \alpha_s$  terms
- 150 times times better precision than today!



8

1409.3072

|η| < 2

0.8

#### **Quark-gluon discrimination**



### High-precision gluon and quark jet studies

- Exploit FCC-*ee* H(gg) as a pure gluon factory:  $H \rightarrow gg$  (BR ~ 8% accurately known) provides 120000 extra clean digluon events
- Multiple handles to study gluon radiation and gluon-jet properties:
  - ▶ Gluon vs. quark via  $H \rightarrow gg$  vs  $Z \rightarrow q\bar{q}$
  - ▶ Gluon vs. quark via  $Z \to b\bar{b}g$  vs  $Z \to q\bar{q}$
- > Multiple high-precision analyses possible:
  - Access to light-quark Higgs Yukawa couplings
  - BSM: Improve q/g/Q discrimination tools
  - pQCD: High-precision QCD coupling
  - non-pQCD: Gluon fragmentation, colour reconnection







### **Colour reconnection**

- Colour Reconnection (CR) of partons impacts final state kinematics e.g. shifted angular correlations, invariant mass shifts, etc.
- Exact dynamic poorly understood
- Source of uncertainty in m<sub>w</sub>, m<sub>top</sub>, anomalous Gauge Couplings extractions in multijet final-states
- ➤ CR impacts all FCC-*ee* multi-jet final states:  $e^+e^- \rightarrow WW(4j), H(2j, 4j), t\bar{t}, ...$
- Combined LEP e<sup>+</sup>e<sup>-</sup> → WW(4j) data best described with 49% CR, 2.2σ away from no-CR
- String-drag effect on W mass (hinted at LEP)
- Exploit huge W stats (x10<sup>4</sup> LEP) to measure m<sub>w</sub> leptonically & hadronically and constrain CR



### **High-precision parton FFs**

Parton-to-hadron fragmentation functions evolution known known at NNLO at high-z and at NNLO\*+NNLL at low-z 1702.01329



FCC-*ee* (much broader z range) provides additional QCD coupling extractions, allowing for  $\delta \alpha_s < 1\%$ 

| Mathod   | Current $\delta \alpha_{\rm s}({\rm m_z^2})/\alpha_{\rm s}({\rm m_z^2})$ uncertainty | Future $\delta \alpha_{\rm s}({ m m}_{ m z}^2)/lpha_{ m s}({ m m}_{ m z}^2)$ uncertainty               |  |  |  |
|----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| method   | (theory & experiment state-of-the-art)                                               | (theory & experiment progress)                                                                         |  |  |  |
| soft FFs | $1.8\%_{	ext{th}} \oplus 0.7\%_{	ext{exp}} pprox 2\%$                                | $0.7\%_{\rm th} \oplus 0.7\%_{\rm exp} \approx 1\% \; (\sim 2 \; {\rm yrs}),  <\!1\% \; ({ m FCC-ee})$ |  |  |  |
|          | (NNLO $^*$ only (+NNLL), npQCD small)                                                | (NNLO+NNLL. More precise $e^+e^-$ data: 90–350 GeV)                                                    |  |  |  |
| hard FFs | $1\%_{ m th} \oplus 5\%_{ m exp} pprox 5\%$                                          | $0.7\%_{\rm th} \oplus 2\%_{\rm exp} \approx 2\%$ (+B-factories), <1% (FCC-ee)                         |  |  |  |
|          | (NLO only. LEP data only)                                                            | (NNLO. More precise $e^+e^-$ data)                                                                     |  |  |  |

#### 07/07/22

#### 13

### **QCD uncertainties on EWK observables**

- With x10<sup>5</sup> more Z's than LEP, EWK observables at FCC-ee will be dominated by systematics (QCD)
- $\succ e^+e^- \rightarrow b\bar{b}$  forward-backward asymmetry at LEP
- > Experimental EWPOs with the largest discrepancy wrt the SM:  $2.8\sigma$
- ➤ Total uncertainty: ~1.6%
  - Statistical: 1.5% (~0.05% at FCC-ee)
  - Systematics: 0.6% (QCD: 0.4% at FCC-ee)
- > QCD effects on  $A_{FB}^{0,b}$ :
  - Gluon splitting
  - Smearing of b-jet/thrust axis
  - b- and c-quark radiation and fragmentation (B/D hadron decay models)







14

### Summary & outlook

The precision needed to fully exploit all future ee, pp, ep, eA, AA SM and BSM programs requires precise control of pQCD and non-pQCD physics



# **Backup Slides**



## CERN FCC-ee project

#### $\geq e^+e^-$ operation before pp at $\sqrt{s}$ = 90, (125), 160, 240 and 350 GeV



| Working point                                        | Z, years 1-2 Z, later       |     | WW                | HZ                         | tt                                                                                                            |      | (s-channel H)       |
|------------------------------------------------------|-----------------------------|-----|-------------------|----------------------------|---------------------------------------------------------------------------------------------------------------|------|---------------------|
| $\sqrt{s} \; (\text{GeV})$                           | 88, 91, 94                  |     | 157, 163          | 240                        | 340-350                                                                                                       | 365  | $m_{ m H}$          |
| Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$ | 115                         | 230 | 28                | 8.5                        | 0.95                                                                                                          | 1.55 | (30)                |
| Lumi/year $(ab^{-1}, 2 \text{ IP})$                  | 24                          | 48  | 6                 | 1.7                        | 0.2                                                                                                           | 0.34 | (7)                 |
| Physics Goal $(ab^{-1})$                             | 150                         |     | 10                | 5                          | 0.2                                                                                                           | 1.5  | (20)                |
| Run time (year)                                      | 2                           | 2   | 2                 | 3                          | 1                                                                                                             | 4    | (3)                 |
|                                                      | $5 \times 10^{12} { m Z}$   |     | $10^8 \text{ WW}$ | $10^6$ HZ                  | $\begin{array}{c} 10^{6} t \bar{t} \\ +200 k \text{ HZ} \\ +50 k \text{ WW} \rightarrow \text{H} \end{array}$ |      |                     |
| Number of events                                     |                             |     |                   | +                          |                                                                                                               |      | (6000)              |
|                                                      |                             |     |                   | $25k WW \rightarrow H$     |                                                                                                               |      |                     |
|                                                      |                             |     |                   |                            |                                                                                                               |      |                     |
| <i>#</i> of light-q jets/year:                       | <b>O(10</b> <sup>12</sup> ) |     | $O(10^{7})$       | O(10 <sup>5</sup> )        | —                                                                                                             |      | $O(10^8)$           |
| # of gluon-jets/year:                                | O(10 <sup>11</sup> )        |     | $O(10^{6})$       | <b>O(10</b> <sup>4</sup> ) | _                                                                                                             |      | O(10 <sup>6</sup> ) |
| # of heavy-O jets/vr                                 | $O(10^{12})$                |     | $O(10^7)$         | O(10⁵)                     | <b>O</b> (10 <sup>6</sup> )                                                                                   |      | $O(10^8)$           |

#### Future $e^+e^-$ colliders under discussion



FCC-ee features luminosities a few time larger than other machines over 90 -300 GeV

> Negligible statistical uncertainty for Z, W, jets, ...,  $\tau$  data sets

17

### QCD coupling $\alpha_S$

- Determines strength of the strong interaction between quarks and gluons
- > Determined at  $Q = m_Z$ , decreases as  $\alpha_S \sim \ln(Q^2/\Lambda^2)$  with  $\Lambda \sim 0.2$  GeV



Least precisely known of all interaction couplings!

$$\delta \alpha \sim 10^{-10} \ll \delta G_{\rm F} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{\rm S} \sim 10^{-3}$$

#### Impacts all QCD cross sections and decays!

|                          |                      |                       |                             |              | Msbar mass erro                     | r budget (from thr         | eshold scan)                                                                    |                                                                                  |
|--------------------------|----------------------|-----------------------|-----------------------------|--------------|-------------------------------------|----------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Process                  | $\sigma$ (pb)        | $\delta \alpha_s(\%)$ | <b>PDF</b> + $\alpha_s(\%)$ | Scale(%)     | $(\delta M_t^{ m SD-low})^{ m exp}$ | $(\delta M_t^{ m SD-low})$ | ) <sup>theo</sup> $(\delta \overline{m}_t(\overline{m}_t))^{\text{conversion}}$ | $\left( \left( \delta \overline{m}_t(\overline{m}_t) \right)^{\alpha_s} \right)$ |
| ggH                      | 49.87                | ± 3.7                 | -6.2 +7.4                   | -2.61 + 0.32 | 40 MeV                              | 50 MeV                     | 7 – 23 MeV                                                                      | 70 MeV                                                                           |
| ttH                      | 0.611                | ± 3.0                 | $\pm$ 8.9                   | -9.3 + 5.9   | $\Rightarrow$ improvement           | It in $\alpha_s$ crucial   |                                                                                 | $\delta\alpha_s(M_z) = 0.001$                                                    |
| Channel                  | $M_{ m H}[{ m GeV}]$ | $\delta \alpha_s(\%)$ | $\Delta m_b$ $\Delta$       | $\Delta m_c$ | Quantity                            | FCC-ee f                   | uture param.unc                                                                 | . Main source                                                                    |
| $H \rightarrow c\bar{c}$ | 126                  | ± 7.1                 | $\pm 0.1\%$ $\pm$           | 2.3 %        | $\Gamma_Z$ [MeV]                    | 0.1                        | 0.1                                                                             | $\delta lpha_s$                                                                  |
| $H \rightarrow gg$       | 126                  | $\pm 4.1$             | $\pm 0.1\%$ $\pm$           | 0 %          | $R_b \ [10^{-5}]$                   | 6                          | < 1                                                                             | $\delta lpha_s$                                                                  |
| 00                       |                      |                       |                             |              | $R_{\ell}$ [10 <sup>-3</sup> ]      | 1                          | 1.3                                                                             | $\delta \alpha_s$                                                                |

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

19

Impacts physics approaching Plank scale: EW vacuum stability, GUT, etc.



'probe photon'

хP

'target photon'

 $\succ \text{ Computed at NNLO: } \int_0^1 dx F_2^{\gamma}(x, Q^2, P^2) = \frac{\alpha}{4\pi} \frac{1}{2\beta_0} \Big\{ \frac{4\pi}{\alpha_s(Q^2)} c_{LO} + c_{NLO} + \frac{\frac{\alpha_s(Q^2)}{4\pi} c_{NNLO}}{4\pi} + \mathcal{O}(\alpha_s^2) \Big\}$ 

 $q^2 = -Q^2$ 

 $p^2 = -P^2 \subset$ 

- > Poor  $F_{\gamma}^2(x, Q^2)$  experimental measurements
- NLO extraction with large experimental uncertainties

 $\alpha_{s} (m_{z}) = 0.1198 \pm 0.0054$ (±4.5%) <u>hep-ph/02</u>05069

- > Future prospects:
  - > Fit with NNLO  $F_{\gamma}^2$  evolution
  - Better data
  - Dedicated simulation studies (already exist at ILC)
  - > Huge  $\gamma\gamma$  statistics at FCC-*ee* will lead to  $\delta\alpha_S/\alpha_S < 1\%$



20

## $\alpha_S$ from jet fragmentation

#### Soft parton-to-hadron FFS:

#### <u>1505.02624</u> – NNLO\*+NNLL



Combined fit of the jet-energy evolution of the FF moments (peak, width, multiplicity, etc.) with  $\alpha_s$  as single free parameters

 $\alpha_{s}(m_{z}) = 0.1205 \pm 0.0022 (\pm 2\%)$ 

#### (full NNLO corrections missing)

#### Hard parton-to-hadron FFS (NLO):

#### $\alpha_{s}(m_{z}) = 0.1176 \pm 0.0055 (\pm 4.7\%)$



**Figure 3:** Energy evolution of the charged-hadron multiplicity (left) and of the FF peak position (right) measured in  $e^+e^-$  and DIS data fitted to the NNLO<sup>\*</sup>+NNLL predictions. The obtained  $\mathscr{K}_{ch}$  normalization constant, individual NNLO<sup>\*</sup>  $\alpha_s(m_z)$  values, and the goodness-of-fit per degree-of-freedom  $\chi^2/ndf$ .

Eduardo Plooror (V/LIP)

#### Jet substructure

Need for state-of art jet substructure studies based on angularities

Variables of jet constituents: multiplicity, LHA, width/broadening, mass/thrust, C-parameter, ...

k=1: IRC-safe computable (N<sup>n</sup>LO + N<sup>n</sup>LL) via SCET (but uncertainties from non-pQCD effects)

 $\lambda_{\beta}^{\kappa} = \sum z_i^{\kappa} \theta_i^{\beta},$ i∈jet

(normalized  $E^n \times \theta^n$  products)

22



23

### Showering differences in MC generators

- > Les Houches Angularity (LHA) is angularity with k = 1 and  $\beta$  = 0.5
- Not directly measured at LEP
- MC parton showers differ on gluon (less on quark) radiation patterns



#### Ultra-precise W,Z and top physics at FCC-ee



> Mostly thanks to the incredibly huge statistics available!

#### **Reduced QCD uncertainties on A<sub>FB</sub>**

QCD uncertainties recomputed from Pythia8.226 and VINCIA2.2



 $\triangleright e^+e^- \rightarrow b\bar{b}$  A<sub>FB</sub> asymmetry for jet-charged-based analyses:



Much smaller uncertainties exhibited by jet-charged-based analyses

> Improved PS & non-pQCD tunes w.  $e^+e^-$  data needed to reduce syst. uncert.