Studies of pentaquark states at LHCb

Nicola Neri University and INFN Milano on behalf of the LHCb collaboration

International Conference on High Energy Physics, ICHEP 2022 Bologna, Italy 6-13 July 2022

Outline

- Introduction
- Selected LHCb results
 - Observation of $J/\psi p$ resonances in $\Lambda^0_b \to J/\psi p K^-$ decays

Phys. Rev. Lett. 122, 191804 (2019) Phys. Rev. Lett. 128, 062001 (2022)

Phys. Rev. Lett. 115, 072001 (2015)

- Evidence for a $J/\psi p$ resonance in $B_s^0 \rightarrow J/\psi p\overline{p}$ decays

Science Bulletin 66 (2021) 1278-1287

- Evidence for a $J/\psi\Lambda$ resonance in $\Xi_b^-\to J/\psi\Lambda K^-$ decays

LHCb-PAPER-2022-031 (in preparation)

- Observation of a $J/\psi\Lambda$ resonance in $B^- o J/\psi\Lambda\overline{p}$ decays
- Summary

Introduction

- Quantum chromodynamics (QCD) describes interactions of quarks and gluons. Accepted theory of strong interactions
- Quark and gluon composition of observed hadrons in experiments is very complex: "QCD dilemma"
- Understanding QCD (longdistance) is also very important for improving sensitivity in new physics searches, e.g. flavour physics, muon g-2

Rev. Mod. Phys. 90, 15003 (2018)

Pentaquark ("exotic") baryons

- Pentaquark baryons (qqqqqq) already present in original Gell-Mann, Zweig formulation of quark model (1964)
- Discovery of pentaquark candidates at LHCb in 2015 after 50 years of experimental searches. Renaissance of hadron spectroscopy
- Different models proposed for quark composition and binding mechanisms of pentaquark "exotic" states
- Precise measurements of mass, width J^P quantum numbers, and identification of isospin multiplets are needed to understand their nature

Molecule model - nuclear forces

F.-K. Guo et al., Rev. Mod. Phys. 90 (2018) 015004 Tightly bound quarks - color forces

A. Esposito, A Pilloni, A. D. Polosa, Phys. Rept. 668 (2017) 1 J.-M. Richard, Few Body Syst. 57 (2016) 1185

F. Guo et al., Phys. Rev. D 92, 071502 (2015)

Selected LHCb results

Other LHCb results not discussed in this talk

Evidence for exotic hadron contributions to $\Lambda_b^0 \rightarrow J/\psi p \pi^-$ decays <u>Phys. Rev. Lett. 117 (2016) 082003</u> Model-independent evidence for $J/\psi p$ contributions to $\Lambda_b^0 \rightarrow J/\psi p \pi^-$ decays <u>Phys. Rev. Lett. 117 (2016) 082002</u> Search for weakly decaying *b*-flavored pentaquarks <u>Phys. Rev. D97 (2018) 032010</u>

New exotic hadron naming convention

- New scheme for consistent naming convention for new exotic states
- Pentaquarks are labelled as P, tetraquarks are labelled as T
- ▹ For P states

INFN

- superscript indicates isospin (i.e. $\Lambda, N, \Sigma, \Delta$ for I = 0, 1/2, 1, 3/2
- subscripts Υ, ψ, φ denote hidden beauty, charm, strangeness; b, c, s denote the open flavour quantum numbers
- Ex: $P_{\psi}^{N}(4312)^{+}$ for $c\overline{c}uud$, $P_{\psi s}^{\Lambda}(4338)^{0}$ for $c\overline{c}uds$

		LHCb-PUB-2022-013, arXiv:2206.15233				
	Minimal quark content	Current name	$I^{(G)},J^{P(C)}$	Proposed name	Reference	
	$c\bar{c}$	$\chi_{c1}(3872)$	$I^G = 0^+, \ J^{PC} = 1^{++}$	$\chi_{c1}(3872)$	[24, 25]	
	$car{c}uar{d}$	$Z_c(3900)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(3900)^+$	[26-28]	
	$car{c}uar{d}$	$X(4100)^+$	$I^{G} = 1^{-}$	$T_{\psi}(4100)^+$	[29]	
	$car{c}uar{d}$	$Z_c(4430)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(4430)^+$	[30, 31]	
	$car{c}(sar{s})$	$\chi_{c1}(4140)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(4140)$	[32 - 35]	
	$car{c}uar{s}$	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, J^P = 1^+$	$T^{ heta}_{\psi s1}(4000)^+$	[7]	
	$car{c}uar{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, J^P = 1^?$	$T_{\psi s1}(4220)^+$	[7]	
	$c\bar{c}c\bar{c}$	X(6900)	$I^G = 0^{+}, \ J^{PC} = ?^{?+}$	$T_{\psi\psi}(6900)$	[4]	
	$csar{u}ar{d}$	$X_0(2900)$	$J^P = 0^+$	$T_{cs0}(2900)^0$	[5, 6]	
	$csar{u}ar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$	$T_{cs1}(2900)^0$	[5, 6]	
	$ccar{u}ar{d}$	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$	[8, 9]	
	$bar{b}uar{d}$	$Z_b(10610)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\Upsilon 1}(10610)^+$	[36]	
	$car{c}uud$	$P_c(4312)^+$	$I = \frac{1}{2}$	$P_{\psi}^{N}(4312)^{+}$	[3]	
	$car{c}uds$	$P_{cs}(4459)^0$	I = 0	$P^{\Lambda}_{\psi s}(4459)^{0}$	[20]	
110	Exotic Ha	Exotic Hadrons at LHC		Plot from P. Koppenburg		
70	000 -			<i>Τ_{ψψ}</i> (69	00)	
60	000 -					
[MeV/c ²]	000 -	P ^N (4.	x(4700) ● x(4500)	<i>₽[№]</i> (4457) ⁺	X(4685) X(4630)	
Mass ⁴⁰	- 000	×(4140) P ^N _ψ (4)	■ X(4274) 380) ⁺	$P_{\psi}^{N}(4440)^{+}$ $P_{\psi}^{N}(4312)^{+}$ $X(3842)$	$T_{\psi s1}(4220)^{+} \qquad P_{\psi s}^{\Lambda}(4338)^{0} \\ T_{\psi s1}^{\theta}(4000)^{+} \qquad X(3960) \\ T_{cc}(3875)^{+} $	
30	000 -			$\bullet_{T_{cs1}}^{T_{cs0}}$	$\begin{array}{c} (2900)^{0} \\ (2900)^{0} \end{array} \qquad $	

2011-01-01 2012-01-01 2013-01-01 2014-01-01 2015-01-01 2016-01-01 2017-01-01 2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-0 patrick,koppenburg@cern.ch 2022-06-29

LHCD THCD

Discovery of $J/\psi p$ pentaquark candidates at LHCb

- Observation of pentaquark candidates in $J/\psi p$ system in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays 6D amplitude analysis, 26000 signal yield
- Pentaquark candidates $P_{\psi}^{N}(4380)^{+}$ and $P_{\psi}^{N}(4450)^{+}$ Phys. Rev. Lett. 115, 072001 (2015)

- Update of the analysis using Run1+Run2 data
 1D fit, 246000 signal yield Phys. Rev. Lett. 122, 222001 (2019)
 - found a new state $P_{\psi}^{N}(4312)^{+}$
 - resolved 2 peaks $P_{\psi}^{N}(4440)^{+}$ and $P_{\psi}^{N}(4457)^{+}$
 - analysis technique not sensitive to broad states such as $P_{\psi}^{N}(4380)^{+}$
 - J^P quantum numbers not measured

Evidence for a $J/\psi p$ resonance in $B_s^0 \rightarrow J/\psi p \overline{p}$ decays

Evidence for a $J/\psi p$ resonance in $B^0_s \to J/\psi p \overline{p}$ decays

- 4D amplitude analysis of flavour untagged $B_s^0 \rightarrow J/\psi p \overline{p}$ decays
- No conventional resonances expected. Clean environment to search for new structures
- No threshold enhancement in $m(p\overline{p})$ spectrum
- Evidence for $P^N_{\psi}(4337)^+$ at 3.1σ J^P not determined
- Breit-Wigner parameters $M = 4337^{+7+2}_{-4-2} \text{ MeV}$ $\Gamma = 29^{+12+14}_{-26-14} \text{ MeV}$

INFN

Evidence for a $J/\psi\Lambda$ resonance in $\Xi_b^- \to J/\psi\Lambda K^-$ decays

Science Bulletin 66 (2021) 1278–1287

- $\Lambda \rightarrow p\pi^-$ decays reconstructed in 2 categories: i) Downstream decay downstream of the vertex detector; ii) Long decay inside the vertex detector
- Signal yield about 1750

Evidence for a $J/\psi\Lambda$ resonance in $\Xi_b^- \to J/\psi\Lambda K^-$ decays

Science Bulletin 66 (2021) 1278–1287

- 6D amplitude analysis of $\Xi_b^- \to J/\psi \Lambda K^-$ decays
- Evidence for $P^{\Lambda}_{\psi s}(4459)^0$ state at 3.1σ level, J^P not determined
- $M = 4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV}$ $\Gamma = 17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV}$ 18 MeV below $\Xi_c^0 \overline{D}^{*0}$ threshold
- Observation of new $\Xi(1690)^-$, $\Xi(1820)^-$ resonant states. $J^P = 3/2^-$ for $\Xi(1820)^-$

INFN Nicola Neri

- Signal yield 4400. High purity 93%. Λ as Downstream + Long categories
- Small Q-value ≈ 128 MeV. Resolution on $m(J/\psi \Lambda \overline{p})$, $\sigma \approx 2$ MeV
- Most precise B^- mass measurement $m(B^-) = 5279.44 \pm 0.05 \text{ (stat)} \pm 0.07 \text{ (syst) MeV}$

- $B^- \to J/\psi \Lambda \overline{p}$ decays: excellent laboratory to search for new pentaguark candidates
 - access to $J/\psi\Lambda$, $J/\psi\overline{p}$ systems
 - excellent $m(J/\psi\Lambda)$, $m(J/\psi\overline{p})$ resolution $\approx 0.5 - 1.0$ MeV allows to search for narrow resonances
 - no predicted $\Lambda \overline{p}$ resonances _ inside phase space

LHCb-PAPER-2022-031 (in preparation)

activity in $J/\psi \overline{p}$

Observation of a $J/\psi\Lambda$ resonance in $B^- \to J/\psi\Lambda\overline{p}$ decays

- 6D amplitude fit: $m(\Lambda \overline{p}), \cos \theta_{K^*}, \cos \theta_{\psi}, \phi_{\mu^-}, \cos \theta_{\Lambda}, \phi_p$
 - GoF test: χ^2 /ndf = 55.3/39, *p* - value = 4.4 %
- Amplitude contributions, fit fractions, and results
 - $NR(J/\psi \overline{p}) 2^{nd}$ order polyn. $f(NR(J/\psi \overline{p}) = 84.0 \pm 2.2\%)$
 - $NR(\overline{p}\Lambda)$ constant $f(NR(\overline{p}\Lambda)) = 11.3 \pm 1.3\%$
 - $P_{\psi s}^{\Lambda}(J/\psi \Lambda)$ Rel. Breit-Wigner $f(P_{\psi s}^{\Lambda}) = 12.5 \pm 0.7 \%$ $m(P_{\psi s}^{\Lambda}) = 4338.2 \pm 0.7$ MeV $\Gamma(P_{\psi s}^{\Lambda}) = 7.0 \pm 1.2$ MeV

LHCb-PAPER-2022-031 (in preparation)

Observation of a $J/\psi\Lambda$ resonance in $B^- \to J/\psi\Lambda\overline{p}$ decays

LHCb-PAPER-2022-031 (in preparation) **>**180 LHCb → Data Nominal 9 fb⁻¹ Baseline $\frac{NR}{NR} \frac{1}{pJ/\psi}$ Observation of $P_{ws}^{\Lambda}(J/\psi\Lambda)$ with <u>U</u>140 Preliminary strange quark content *ccuds* close to $\Xi_{c}^{+}D^{-}$ threshold (> 10 σ significance) Background $m(P_{ws}^{\Lambda}) = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$ 80 $\Gamma(P_{ws}^{\Lambda}) = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$ 60 40 • J = 1/2 is assigned. $J^P = 1/2^$ preferred. $J^P = 1/2^+$ excluded at 20

> 0 ⊑ 4.2

Is it a baryon-meson molecule or a tightly bound five-quark state?

4.25

90% C.L.

4.3

 $m(J/\psi \Lambda)$ GeV

4.35

Summary

- The study of b-hadron decays at LHCb continues to provide exciting results. for pentaquark candidates. However, no consensus yet on theory models
 - Pentaquark candidates discovery in $\Lambda_h^0 \rightarrow J/\psi p K^-$ decays
 - $J/\psi p$ structures with minimal quark content $c\overline{c}uud$ close to $\Sigma_c^+\overline{D}^0, \Sigma_c^+\overline{D}^{*0}$ baryon-meson ulletthresholds. J^P not determined yet. $P_w^N(4312)^+$, $P_w^N(4440)^+$ and $P_w^N(4457)^+$
 - Evidence for new pentaquark candidates: $P_{ws}^{\Lambda}(4459)^0$ with strangeness in $\Xi_b^- \to J/\psi \Lambda K^-$ decays, $P_w^N (4337)^+$ in $B_s^0 \to J/\psi p \overline{p}$ decays
 - First pentaquark candidate $P_{ws}^{\Lambda}(4338)^0$ with strangeness observed in $B^- \to J/\psi \Lambda \overline{p}$ decays
 - $J/\psi \Lambda$ structure with minimal quark content $c\overline{c}uds$ close to $\Xi_c^+D^-$ baryon-meson ulletthresholds. $J^P = 1/2^-$ spin assigned, – parity preferred Inst. luminosity [10³³ cm⁻²s⁻¹
 - Exciting times ahead of us: Run3 data and close exchange between theory and experiments will help understanding the nature of exotic pentaguark candidates

Backup slides

- Results are robust against cross checks and systematic uncertainties
 - Fit with only $K^{*-}(\rightarrow \Lambda \overline{p})$ resonances, $\chi^2/\mathrm{ndf} = 123/33$. Rejected
 - Fit with baseline model (null hypothesis) $NR(J/\psi\bar{p})$, $NR(\bar{p}\Lambda)$ only, $\chi^2/ndf = 121/39$. Rejected. Significance of $P^{\Lambda}_{\psi s}(J/\psi\Lambda) > 10\sigma$ from $2\Delta \log \mathscr{L} = 243$, $\Delta ndf = 4$ wrt nominal model
 - Fit with resonant $J/\psi \overline{p}$ Breit-Wigner, $2\Delta \log \mathscr{L} = 80$ wrt nominal model. Disfavoured
 - Spin-parity J = 1/2 is assigned. $J^P = 1/2^-$ for $P^{\Lambda}_{\psi s}(J/\psi \Lambda)$ is preferred. $J^P = 1/2^+$ excluded at 90% C.L. using the CL_s method.
 - Fit with $m(P_{\psi s}^{\Lambda})$ allowed to go outside of phase space. Consistent results
 - Main syst. uncertainties: J^P assignment, model with additional LS couplings

Nicola Neri

CMS results

Invariant mass resolution:

-CMS: m(pπ)~3.7 MeV,

-LHCb: m(B)~2 MeV, $m(J/\psi \Lambda) = 0.5 - 1.0$ MeV

Statistics: 10x larger yield LHCb analysis, 4400 vs 450

Trigger and selection cuts, in particular on p_T : -CMS: $p_T(J/\psi) > 7$ GeV, $p_T(\Lambda) > 1$ GeV, $p_T(p) > 1$ GeV -LHCb: $p_T(\mu) > 500$ MeV, no p_T cut on Λ and p

Resonance	Mass (MeV)	Natural width (MeV)	J^P
$K_4^*(2045)^+$	2045 ± 9	198 ± 30	4^+
$ m K_{2}^{*}(2250)^{+}$	2247 ± 17	180 ± 30	2^-
$ m K_{3}^{*}(2320)^{+}$	2324 ± 24	150 ± 30	3^+

JHEP12(2019)100

Spectra are not compatible with pure phase space distributions. Efficiency corrected plot in $m(\overline{\Lambda}p)$, $\cos \theta_{K^*}$

Considered possible contributions of known K*+ resonances to improve the agreement

INFN

Data

4.3

 $\langle \mathsf{P}^{\mathsf{U}}_{\mathsf{i}} \rangle (\mathsf{H}_{\mathsf{L8}})$

cosθ_{K*} (H_{cose})

4.32

LHCb detector at CERN

LHCb data sample and plans

- Collected >9 fb⁻¹ in 2010-2018. Major detector upgrade during LS2 (Upgrade I). Aim at 50 fb⁻¹ before 2033
- Major detector upgrade during LS4 (Upgrade II 2033). Aim at >300 fb⁻¹ after 2035 -

LHCb Upgrade detector

Major detector upgrade during Long Shutdown 2 (LS2)

