

Forward proton measurements with ATLAS

New results for ICHEP2022

- Exclusive pion pair production at $\sqrt{s} = 7$ TeV
- Measurement of the total cross section and ρ-parameter from elastic scattering at √s=13 TeV

Hasko Stenzel (JLU Giessen) On behalf of the ATLAS Collaboration

Bundesministerium für Bildung und Forschung

Forward proton measurements with ALFA

ALFA the Roman Pot detector in ATLAS used for measurements of elastic scattering and diffraction in special runs of the LHC

- $\beta^*=90m$ at $\sqrt{s}=7$ TeV, excl. pions
- $\beta^*=2.5$ km at \sqrt{s} 13 TeV, elastics

Exclusive $pp \rightarrow pp\pi^+\pi^-$

Selection of exclusive events:

- Forward protons detected in ALFA
- Opposite-charged pions detected in the central ATLAS detector
- Exclusivity enhanced by vetoing activity in cells of the Minimum Bias Trigger Scintillator

Exclusive $pp \rightarrow pp\pi^+\pi$ results

The cross section is determined in two different fiducial volumes

elastic configuration: $\sigma = 4.8 \pm 1.0$ (stat) $^{+0.3}_{-0.2}$ (syst) ± 0.1 (lumi) ± 0.1 (model) μb

anti-elastic configuration: $\sigma = 9 \pm 6 \text{ (stat)}^{+1}_{-1} \text{ (syst)} \pm 1 \text{ (lumi)} \pm 1 \text{ (model)} \mu b$

Model predictions: elastic 1.5-1.6 µb, anti-elastic 2-3 µb

→ First observation of exclusive diffraction with forward proton tag at LHC 07/07/2022 Hasko Stenzel

Elastic scattering at 13 TeV

s [GeV

The total $pp \rightarrow X$ cross section is a fundamental quantity. Can't be calculated in perturbative QCD. Can be measured using the Optical Theorem:

 $\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \cdot \frac{d\sigma_{el}}{dt} \bigg|_{t\to 0}$ It is related through dispersion relations to the p-parameter, derived from unitarity and analycity of scattering amplitudes.

250 σ [mb] 104 102 ATLAS 100 ΌΤΕΜ 98 200 Lower energy pp 96 Lower energy pp Cosmic rays COMPETE HPR1R2 150 ----- 12.7 - 1.75 ln(s) + 0.14 ln²(s) 100 σ_{tot} 50 10³ 10^{2} 10' 10

From a measurement of the elastic cross section differential in the Mandelstam *t*-variable σ_{tot} and ρ can be extracted together with parameters describing the shape of the *t*-spectrum.

 $=\frac{\operatorname{Re}(f_{el}(t))}{\operatorname{Im}(f_{el}(t))}$

Special optics with $\beta^*=2.5$ km required to measure ρ at small t.

Measurement up to √s= 8 TeV <u>PLB (2016) 158</u>

Selection of elastic events

Background

Two sources of background are considered:

- Accidental halo+halo and halo+single diffraction coincidences
- Double-Pomeron exchange (DPE)
- Accidental coincidence are determined from single-side templates, DPE from simulation.

Both backgrounds are normalized to control regions in the data.

The irreducible background fraction is very small: 0.75‰, with a relative uncertainty of 10-15%.

Hasko Stenzel

Luminosity

A dedicated analysis of the luminosity for this special low- μ run was performed. The main uncertainty is derived from the stability of different algorithms with respect to the nominal algorithm from LUCID.

Calibration transfer, long-term stability and background uncertainty : 1.85% vdM calibration uncertainty: 1.1% Total: 2.15%

Run number

 $L_{\text{int}} = 339.9 \pm 0.1 \text{ (stat.)} \pm 7.3 \text{ (syst.)} \,\mu\text{b}^{-1}$

Systematic uncertainties for $d\sigma/dt$

Calculation of the differential elastic cross section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t_i} = \frac{1}{\Delta t_i} \times \frac{\mathcal{M}^{-1}[N_i - B_i]}{A_i \times \epsilon^{\mathrm{reco}} \times \epsilon^{\mathrm{trig}} \times \epsilon^{\mathrm{DAQ}} \times L_{\mathrm{int}}}$$

Experimental systematic uncertainties calculated as function of t. Main uncertainties: Alignment, luminosity, reconstruction efficiency

Hasko Stenzel

Results

Physics parameters are extracted from a profile fit to the cross section including experimental systematic uncertainties. Fit function:

$$\frac{d\sigma}{dt} = \frac{1}{16\pi} \left| f_{\rm N}(t) + f_{\rm C}(t) \mathrm{e}^{\mathrm{i}\alpha\phi(t)} \right|^2$$
$$f_{\rm C}(t) = -8\pi\alpha\hbar c \frac{G^2(t)}{|t|}$$
$$f_{\rm N}(t) = (\rho + \mathrm{i}) \frac{\sigma_{\rm tot}}{\hbar c} \mathrm{e}^{\frac{-B|t| - Ct^2 - D|t|^3}{2}}$$

The main uncertainties are related to the luminosity and the alignment, for p also theoretical uncertainties are important.

Results: Theory uncertainties

	$\sigma_{\rm tot}[{\rm mb}]$	ρ	$B[\text{ GeV}^{-2}]$	$C[\text{GeV}^{-4}]$	$D[\text{GeV}^{-6}]$
Central value	104.68	0.0978	21.14	-6.7	17.4
Statistical error	0.22	0.0043	0.07	1.1	3.8
Experimental error	1.06	0.0073	0.11	1.9	6.8
Theoretical error	0.12	0.0064	0.01	0.04	0.15
Total error	1.09	0.0106	0.13	2.3	7.8

Theoretical uncertainties:

- Parametrization of the strong amplitude
- Coulomb phase
- Proton form factor
- Nuclear phase
- \rightarrow Important for ρ !

Stability:

- Time dependence
- Fit range
- Different t-reconstruction methods
- Difference between arms 11

Hasko Stenzel

Interpretation: energy evolution of σ_{tot} and ρ

- Many models were investigated for the energy evolution of σ_{tot} and ρ (connected via dispersion relations)
- The canonical evolution model COMPETE is disfavoured (predicted $\rho \approx 0.13$)
- Model with an Odderon tuned to TOTEM, not in good agreement with our σ_{tot}
- Damped amplitude model in best agreement with our data
- ALFA and TOTEM difference in σ_{tot} about 2.2 σ (similar trend seen at 7 and 8 TeV)

Total elastic and inelastic cross sections

By integrating the nuclear part of the theoretical prediction of the differential elastic cross section over the full phase space:

 $\sigma_{\rm el}^{\rm extr} = 27.27 \pm 1.10 \,({\rm exp.}) \pm 0.30 \,({\rm th.}) \,{\rm mb}$

The total inelastic cross section is obtained by subtraction off the total cross section.

Evolution of *B* and $\sigma_{el} / \sigma_{tot}$

The B-slope determined at small t compared to lower energy and the evolution predicted by models: \rightarrow shrinkage of the forward cone Ratio of elastic to total cross section should reach asymptotically ½ → Black disk limit

Conclusion

Elastic results:

- $\sigma_{\text{tot}}(pp \to X) = 104.68 \pm 1.08 \text{ (exp.)} \pm 0.12 \text{ (th.) mb},$ $\rho = 0.0978 \pm 0.0085 \text{ (exp.)} \pm 0.0064 \text{ (th.)},$ $B = 21.14 \pm 0.13 \text{ GeV}^{-2},$ $C = -6.7 \pm 2.2 \text{ GeV}^{-4},$ $D = 17.4 \pm 7.8 \text{ GeV}^{-6}.$
- The low value of ρ and our measurement of σ_{tot} are in tension with standard evolution models like COMPETE
- Our measurements of σ_{tot} are systematically lower than the results from TOTEM (5.9 mb, 2.2 σ at 13 TeV). The difference is mostly in the normalization.

Exclusive pions: first observation of $pp \rightarrow pp\pi^+\pi^-$ @7 TeV at LHC with forward proton tag.

07/07/2022

Hasko Stenzel

Back-up

Forward proton measurements with ALFA

Elastic scattering data were taken in 2016 at Vs 13 TeV with $\beta^*=2.5$ km and Roman Pot insertion to 3.5 σ recording 6.8 M events in $\int L dt = 340$ nb⁻¹ of integrated luminosity.

Coverage in t during special runs.

Acceptance

The t-range for the fit to extract the physics parameters is set by requiring the acceptance to be above 10%.

Reconstruction efficiency and beam optics

Run number

Reconstruction efficiency by a tagand-probe method (data-driven)

- Reconstruction can fail because of shower development
- Efficiency in arm1 slightly higher because of material distribution

Beam optics (transport matrix elements) needed for *t*-reconstruction

- An effective optics model is tuned using correlations in ALFA variables
- small corrections are derived to the strength of the quadrupoles

Luminosity values

Fill	Run	Luminosity [µb ⁻¹]	Selected elastic	Reconstruction efficiency	
			candidates	Arm 1 [%]	Arm 2 [%]
5313	308979	21.38	423 862	84.82 ± 0.56	83.11 ± 0.87
5313	308982	6.81	136 499	85.84 ± 0.54	84.44 ± 0.55
5314	309010	41.27	846 581	87.11 ± 0.51	85.00 ± 0.64
5317	309039	120.08	2 409 968	85.45 ± 0.49	83.23 ± 0.52
5317	309074	44.31	887 373	85.55 ± 0.39	83.48 ± 0.48
5321	309165	55.87	1 149 499	87.08 ± 0.40	85.41 ± 0.44
5321	309166	50.17	1 043 576	88.28 ± 0.38	86.43 ± 0.45

Theoretical prediction

Cross section from squared amplitudes.

Coulomb amplitude

Proton form factor

Nuclear amplitude with curvature terms *C* and *D*.

Coulomb phase

 $\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{16\pi} \left| f_{\mathrm{N}}(t) + f_{\mathrm{C}}(t) \mathrm{e}^{\mathrm{i}\alpha\phi(t)} \right|^2$

$$f_{\rm C}(t) = -8\pi\alpha\hbar c \frac{G^2(t)}{2|t|}$$

$$G(t) = \left(\frac{\Lambda}{\Lambda + |t|}\right)^2 \frac{G^2(t)}{1}$$

$$f_{\rm N}(t) = (\rho + i) \frac{\sigma_{\rm tot}}{\hbar c} e^{\frac{-B|t| - Ct^2 - D|t|^3}{2}}$$

$$\phi(t) = -\left(\gamma_{\rm E} + \ln\frac{B|t|}{2} + \ln\left(1 + \frac{8}{B\Lambda}\right)\right) + \frac{4t}{\Lambda} \cdot \ln\frac{\Lambda}{4t} - \frac{2t}{\Lambda}$$

Full prediction

N.b.: Also several models of strong phase tested. 07/07/2022

$$\frac{\sigma}{|t|} = \frac{4\pi\alpha^2(\hbar c)^2}{|t|^2} \times G^4(t)$$

$$- \sigma_{\text{tot}} \times \frac{\alpha G^2(t)}{|t|} \left[\sin\left(\alpha\phi(t)\right) + \rho\cos\left(\alpha\phi(t)\right)\right] \times \exp\left(\frac{-B|t| - Ct^2 - D|t|^3}{2}\right)$$

$$+ \sigma_{\text{tot}}^2 \frac{1 + \rho^2}{16\pi(\hbar c)^2} \times \exp\left(-B|t| - Ct^2 - D|t|^3\right) ,$$
Hasko Stenzel 21

Test of models

Model	global χ^2 /Ndof	ALFA	TOTEM	LHC data included
		partial χ^2 /Ndof	partial χ^2 /Ndof	in model tuning
COMPETE HPR1R2	1.42	3.00	3.50	A 7; T 7, 8
FMO	1.61	9.50	0.13	T 7, 8, 13
BCBM	1.03	0.81	2.04	all
KMR		0.85	2.29	A 7, 8; T 7, 8, 13
HEGS		8.10	0.83	A 7; T 7, 8
BJAS		11.90	0.29	A 7; T 7, 8, 13

- → Best agreement with ALFA data is observed for the BCBM model (damped amplitude) and the KMR model.
- \rightarrow Main message:
- "Standard" evolution model like COMPETE are not able to describe simultaneously σ_{tot} and ρ
- New effects in the evolution are observed, if these are induced by the Odderon or a flatter energy evolution of σ_{tot} will need to be studied further
- The situation complicated by the σ_{tot} discrepancy between ALFA and TOTEM

Model references

COMPETE Collaboration, J. R. Cudell et al., *Benchmarks for the Forward Observables at RHIC, the Tevatron Run II and the LHC*, <u>Phys. Rev. Lett. 89 (2002) 201801</u>, arXiv: <u>hep-ph/0206172 [hep-ph]</u>

M. M. Block and R. N. Cahn, Forward Hadronic *pp* and $p\bar{p}$ *Elastic Scattering Amplitudes: Analysis of Existing Data and Extrapolations to Collider Energies*, <u>Phys. Lett. B 120 (1983) 224</u>

C. Bourrely and A. Martin, *Theoretical predictions for pp and p anti-p elastic scattering in the TeV energy domain*, CERN - ECFA Workshop on Feasibility of Hadron Colliders in the LEP Tunnel , 1984, url: https://cds.cern.ch/record/153114

E. Martynov and B. Nicolescu, *Did TOTEM experiment discover the Odderon?*, <u>Phys. Lett. B 778 (2018)</u> <u>414</u>, arXiv: <u>1711.03288</u> [hep-ph]

V. A. Khoze, A. D. Martin and M. G. Ryskin, *Elastic and diffractive scattering at the LHC*, <u>Phys. Lett. B 784</u> (2018) 192, arXiv: <u>1806.05970</u> [hep-ph]

O. V. Selyugin, *Nucleon structure and the high energy interactions*, <u>Phys. Rev. D 91 (2015) 113003</u>, arXiv: <u>1505.02426</u> [hep-ph]

W. Broniowski, L. Jenkovszky, E. Ruiz Arriola and I. Szanyi, Hollowness in pp and $p\bar{p}$ -scattering in a Regge model, <u>Phys. Rev. D 98 (2018) 074012</u>, arXiv: <u>1806.04756 [hep-ph]</u>