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A Bird’s-Eye view

♠ (Semi)-analytic resummation has achieved an impessive

accuracy (NNLL and N3LL) over previous decades.

1− T 0803.0342,1006.3080,1105.4560

ρH 1005.1644

BT ,BW 1210.0580

C -parameter 1411.6633

EEC hep-ph/0407241,1708.04093,1801.02627

Angularities 1806.10622,1807.11487

D-parameter 1912.09341

♠ Parton showers (PS) have not kept up with such progress.

♠ PS are essential due to their versatility: It is much more efficient

to simulate QCD dynamics than to resum a specific observable.
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Motivation: Recent progress in NLL accurate PS

♠ The PanScales family of PS has been able to achieve NLL

accuracy for any recursive IRC safe observable:1

1Dasgupta et. al. (2002.11114), color and spin
(
2011.10054,2103.16526,2111.01161

)
, G. Salam “The power

and limits of parton showers”
(

https://gsalam.web.cern.ch/gsalam/talks/repo/202109-SLAC-seminar

-SLAC-panscales-seminar.pdf
)
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Outline

1. What do we need to achieve NNLL? Introduction to Bq
2
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Look back at NLL

♠ Over 30 years ago Catani, Marchesini & Webber introduced the
notion of a soft physical coupling:

dPsc = Ci
αphys
s

π

dk2
t

k2
t

dz

1− z
, αphys

s = αs(k2
t )

(
1 + KCMW

αs(k2
t )

2π

)

♠ The CMW coupling represents the intensity of soft gluon
radiation.

KCMW =

(
67

18
−
π2

6

)
CA −

10

9
TF

♠ For showers that interwine real and virtual corrections through

unitarity, specifying the (CMW) scheme and scale of the

coupling is the sole NLO ingredient to achieve NLL accuracy.
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Questions for NNLL PS

♠ What is the scale of the coupling beyond the soft limit?

k2
t → k2

t ∗ f (z), f (z) = ?

♠ The inclusive limit of the double-soft function defines the CMW

coupling. Can we furnish a commensurate understanding of the

triple-collinear splitting functions?

♠ What is the underlying physics of the coefficient Bq
2 ? Can we

define a suitable differential version thereof?

♠ Can we extend the notion of the web beyond the soft limit?
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Introduction into Bq
2

♠ So what exactly is Bq
2 ?

♠ Let us take an example from the transverse momentum distribution in

hadronic collisions:2

dσab→F

dp2
t

=
1

2

∫
b dbJ0(bpt)W

F
ab(s,Q, b)

♠ The interesting piece is the function W F
ab(s,Q, b), which includes the

quark/gluon form factor :

Sq/g (Q, b) = exp

(
−
∫ Q2

b2
0/b

2

dq2

q2

[
Aq/g (αs) ln

Q2

q2
+ Bq/g (αs)

])

2de Florian & Grazzini hep-ph/0108273 (see also the references therein)
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Introduction into Bq
2

♠ Each function has a perturbative expansion. The A function has soft

origin, while the B function has a hard-collinear origin.

Aq/g =
∞∑
n=1

(αs

2π

)n
A
q/g
(n) , Bq/g =

∞∑
n=1

(αs

2π

)n
B

q/g
(n)

♠ Let us focus on the B series. Going back to direct space, one finds a

“hard-collinear” logarithm:(αs

2π

)
B

q/g
1 ||

(αs

2π

)2

B
q/g
2

This talk is about Bq
2 and a suitably defined differential version

Bq2 (z).
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Introduction into Bq
2

♠ What do we know about the structure of Bq
2 ?

♠ In e+e− → hadrons, there exists a complete framework to resum any

recursive IRC (global) observable up to NNLL accuracy - ARES.2

♠ For any such observable, we have:3

Bq
2 = −γ(2)

q + CFb0Xv , b0 =
11

6
CA −

2

3
TRnf

♠ We have two pieces. First, an observable-dependent constant, Xv , that

comes multiplied by b0. The other piece, γ
(2)
q , is universal and

represents the endpoint contribution, i.e. δ(1− x), to the NLO

non-singlet DGLAP kernel obtained from sum rules.4

2Banfi, BKE & Monni 1807.11487, Banfi et. al. 1412.2126

3See also hep-ph/0407241, Davies & Striling Nucl.Phys.B 244 (1984)

4Ellis et. al. “QCD and Collider Physics”
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Triple collinear splitting functions

At NLO, we have four different splittings:5

♠ q → g1g2q3

5Catani & Grazzini hep-ph/9810389
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Triple collinear splitting functions

♠ Therefore, we end up with abelian, C 2
F , and non-abelian, CFCA,

pieces:

〈P̂g1g2q3 〉 = C2
F 〈P̂

(ab)
g1g2q3

〉+ CFCA〈P̂
(nab)
g1g2q3

〉

♠ These are functions of the invariant masses sij ' zi zj θ
2
ij , where

zi is the light-cone momentum fraction of parton i .

〈P̂(ab)
g1g2q3

〉 =

{
s2

123

2s13s23
z3

[
1 + z2

3

z1z2
− ε

z2
1 + z2

2

z1z2
− ε(1 + ε)

]

+
s123

s13

[
z3(1− z1) + (1− z2)3

z1z2
+ ε2(1 + z3)− ε(z2

1 + z1z2 + z2
2 )

1− z2

z1z2

]

+ (1− ε)
[
ε− (1− ε)

s23

s13

]}
+ (1↔ 2)
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Triple collinear splitting functions

〈P̂(nab)
g1g2q3

〉 =

{
(1− ε)

(
t2

12,3

4s2
12

+
1

4
−
ε

2

)

+
s2

123

2s12s13

[
(1− z3)2(1− ε) + 2z3

z2
+

z2
2 (1− ε) + 2(1− z2)

1− z3

]

−
s2

123

4s13s23
z3

[
(1− z3)2(1− ε) + 2z3

z1z2
+ ε(1− ε)

]

+
s123

2s12

[
(1− ε)

z1(2− 2z1 + z2
1 )− z2(6− 6z2 + z2

2 )

z2(1− z3)
+ 2ε

z3(z1 − 2z2)− z2

z2(1− z3)

]

+
s123

2s13

[
(1− ε)

(1− z2)3 + z2
3 − z2

z2(1− z3)
− ε
(

2(1− z2)(z2 − z3)

z2(1− z3)
− z1 + z2

)

−
z3(1− z1) + (1− z2)3

z1z2
+ ε(1− z2)

(
z2

1 + z2
2

z1z2
− ε
)]}

+ (1↔ 2)
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Triple collinear splitting functions

At NLO, we have four different splittings:

♠ q → q′1q̄
′
2q3 ♠ q → q1q̄2q3
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Triple collinear splitting functions

♠ Therefore, we end up with two structures. Summing over
flavours: ∑

f

〈P̂qf1 q̄
f
2q3
〉 = nf 〈P̂q′1 q̄

′
2q3
〉+ 〈P̂(id)

q1 q̄2q3
〉

〈P̂q′1 q̄
′
2q3
〉 =

1

2
CFTR

s123

s12

[
−

t2
12,3

s12s123
+

4z3 + (z1 − z2)2

z1 + z2
+(1− 2ε)

(
z1 + z2 −

s12

s123

)]

〈P̂(id)
q1 q̄2q3

〉 = CF

(
CF −

1

2
CA

){
(1− ε)

(
2s23

s12
− ε
)

+
s123

s12

[
1 + z2

1

1− z2
−

2z2

1− z3

− ε
(

(1− z3)2

1− z2
+ 1 + z1 −

2z2

1− z3

)
− ε2(1− z3)

]

−
s2

123

s12s13

z1

2

[
1 + z2

1

(1− z2)(1− z3)
−ε
(

1 + 2
1− z2

1− z3

)
− ε2

]}
+ (2↔ 3)
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Road map

♠ What variables do we fix?

♠ Gluon decay:

z

1− z

θg
z

1− z

θg

♠ Gluon emission:

1− z

1 2

3

θ13 | (θ23 < θ13)

θ1,23
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Gluon decay: web variables

♠ To obtain an analytic handle on the integrals, we express the
triple collinear phase space as follows:

dΦweb
1→3 =

(4π)2ε

256π4

2z1−2εdz

1− z

1

Γ(1− ε)
d2−2εk⊥

Ω2−2ε

ds12

(s12)ε
dzp

(zp(1− zp))ε
1

Γ(1− ε)
dΩ2−2ε

Ω2−2ε

♠ The meaning of the different variables is as follows:

z3 = z

z1 = (1− z)zp

z2 = (1− z)(1− zp)

kt = EJ (1− z)θg

♠ The invariant masses (s13, s23) can be readily expressed in

terms of these variables.
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The θg distribution: CFTRnf

♠ Using the web variables the computation is quite manageable:

(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)CFTRnf

= CFTRnf

(αs

2π

)2
z−3ε

(
(1− z)2θ2

g

)−2ε

(
−

2

3ε
pqq(z, ε)−

10

9
pqq(z)−

2

3
(1− z)

)
♠ Due to the angular ordering property built into the splitting

function, we can send the invariant mass to infinity:

max.{s12} → ∞

♠ The virtual corrections of 1→ 2 splitting is quite simple for this
colour structure:

(
θ2
g

σ0

d2σ
(2)
virt.

dθ2
g dz

)CFTRnf

= CFTRnf

(αs

2π

)2
z−2ε(1 − z)−2ε

(
θ2
g

)−ε ( 2

3ε
pqq(z, ε)

)
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The θg distribution: CFTRnf

♠ The final result then reads:

(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)CFTRnf

= CFTRnf

(αs

2π

)2
(

1 + z2

1− z

(
2

3
ln
(
z(1− z)2θ2

g

)
−

10

9

)
−

2

3
(1− z)

)

♠ One can also compute the ρ distribution (ρ = s123/E
2):

(
ρ

σ0

d2σ(2)

dρ dz

)CFTRnf

= CFTRnf

(αs

2π

)2
(

1 + z2

1− z

(
2

3
ln ((1− z)ρ)−

10

9

)
−

2

3
(1− z)

)

♠ We immediately observe a remarkable property. One can move

between both distributions using the LO relation:

ρ = z(1− z)θ2
g
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Extracting Bq
2(z): CFTRnf

♠ To zoom on the NNLL structure, we need to subtract off the LL
& NLL (soft-enhanced) structures:

CFTRnf

(αs

2π

)2
[

2

1− z

(
2

3
ln
(
(1− z)2θ2

g

)
−

10

9

)
−

2

3
(1 + z) ln θ2

g

]
♠ Now we have a purely collinear object:

Bq,nf2 (z; θ2
g ) =

(
1 + z2

1− z

2

3
ln z − (1 + z)

(
2

3
ln(1− z)2 −

10

9

)
−

2

3
(1− z)

)
♠ Integrating over z one finds:

B
q,θ2

g ,nf
2 = CFTRnf

(αs

2π

)2
∫ 1

0
dz Bq,nf2 (z; θ2

g ) = −γ(2,nf )
q + CFb

(nf )
0 Xθ2

g

♠ One can surely play the same game with the ρ distribution:

Xρ =
π2

3
−

7

2
, Xθ2

g
=

2π2

3
−

13

2
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The θg distribution: CF (CF − CA/2)

♠ Here, the full structure contributes at NNLL.

♠ The web variables allows an analytic evaluation:

(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)(id.)

= CF

(
CF −

CA

2

)(αs

2π

)2

[(
4z −

7

2

)
+

5z2 − 2

2(1− z)
ln z +

1 + z2

1− z

(
π2

6
− ln z ln(1− z)− Li2(z)

)]
♠ Thus it is straightforward to extract Bq2 (z):

Bq,(id.)
2 (z) =

(
4z −

7

2

)
+

5z2 − 2

2(1− z)
ln z +

1 + z2

1− z

(
π2

6
− ln z ln(1− z)− Li2(z)

)
♠ This function is regular as z → 1, and its integral reads:∫ 1

0
dz Bq,(id.)

2 (z) =
13

4
−
π2

2
+ 2ζ3
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The θg distribution: non-abelian channel

♠ The non-abelian channel is the most tedious to compute.
The web variables allow for an anlaytic computation:

(
ρ

σ0

d2σ(2)

dρ dz

)nab.

= CFCA

(αs

2π

)2
[(

1 + z2

1− z

)(
−

11

6
ln (ρ (1− z)) +

67

18
−
π2

6

+ ln2 z + Li2

(
z − 1

z

)
+ 2Li2(1− z)

)
+

3

2

z2 ln z

1− z
+

1

6
(8− 5z)

]

♠ We can now obtain the θg distribution using the LO
replacement:

Bq,(nab.)
2 (z; θ2

g ) = −
1 + z2

1− z

11

6
ln z+(1+z)

(
11

6
ln(1− z)2 −

67

18
+
π2

6

)
+

11

6
(1−z)

+
2z − 1

2
+

1 + z2

1− z

(
ln2 z + Li2

(
z − 1

z

)
+ 2Li2(1− z)

)
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The θg distribution: non-abelian channel

♠ To find the CFCA color structure of Bq
2 , we must not forget the

identical fermions interference term:

B
q,θ2

g ,CFCA

2 = CFCA

(αs

2π

)2
∫ 1

0
dz

(
Bq,(nab.)

2 (z; θ2
g )−

1

2
Bq,(id.)

2 (z; θ2
g )

)
= −γ(2,CA)

q + CFb
(CA)
0 Xθ2

g

♠ Same consideration holds for the ρ distribution with Xθ2
g
→ Xρ.

Take home 1: We can define a suitable differential object,

which gives rise to the resummation coefficient Bq
2 .

Take home 2: We can move from the θg distribution to any

other observable by using the LO relation.
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The scale of the physical coupling

♠ Let us combine the CFTRnf and non-abelian channels with the
LO distribution:(
θ2
g

σ0

d2σ

dθ2
gdz

)tot.

=
θ2
g

σ0

d2σ(1)

dθ2
g dz

+

(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)CFTRnf

+

(
θ2
g

σ0

d2σ(2)

dθ2
g dz

)nab.

= CFpqq(z)

[
αs
(
E2
)

2π
+
(αs

2π

)2 (
−b0 ln

(
(1− z)2θ2

g

)
+ KCMW

)
−
(αs

2π

)2
b0 ln z

]

+CFb0

(αs

2π

)2
(1− z) +

(αs

2π

)2
Rnab.(z)

Take home 3: The structure of different pieces:

• Red: the usual soft physical coupling

• Blue: the scale of the coupling beyond the soft limit zk2
t

• Orange: absorb in a new scheme of the coupling

• Black: a remainder function with a CFCA colour factor
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The abelian channel: C 2
F

♠ The physics of gluon emissions off the quark is quite distinct

different from the gluon decay.

1− z
θ13 � 1 | θ23 < θ13

♠ To zoom in on the NNLL structure, we need to subtract the
iterated 1→ 2 limit (strongly ordered):5

Bq,(ab.)
2 (z; θ2) =

(
θ2

σ0

d2σ

dzdθ2

)d-r

−
(
θ2

σ0

d2σ

dzdθ2

)s-o

+

(
θ2

σ0

d2σ

dzdθ2

)r-v

, θ ≡ θ13

5For uniformity, a factor of (CFαs/2π)2 is stripped from the RHS.
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The abelian channel: C 2
F

♠ Unfortunately, the constraint θ23 < θ13 renders an analytic

evaluation impossible.

♠ Nevertheless, we were able to express the result as a 1d integral:

0.2 0.4 0.6 0.8 1.0
z

-10

-8

-6

-4

-2

ℬ2
q,(ab.)

(z)

♠ We can use the PSLQ algorithm to fit the integral:5∫ 1

0
dz Bq,(ab.)

2 (z; θ2) = π2 − 8ζ(3)−
29

8

5We thank Pier Monni for letting us use his routine. 16



Outlook

♠ One practical side of this work is the ability to resum a host of

groomed observables using a QCD-based approach (along the

style of ARES).

♠ The work for gluon jets is underway, and one can ask the same

type of questions.

♠ The most important application is the inclusion in PS.
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THANK YOU FOR THE LISTENING!
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