Nucleon Electromagnetic Form Factors at Large Momentum from Lattice QCD

Sergey Syritsyn (Stony Brook University) for Lattice Hadron Physics collaboration

National Energy Research Scientific Computing Center

International Conference on High-Energy Physics (ICHEP) Bologna, Jul 8, 2022

- Nucleon vector form factors : introduction and motivation
- Challenges for high-Q² hadron structure on Lattice
- Preliminary results and comparison to experiment & phenomenology
- Examining systematic effects
- Summary and Outlook

Nucleon Elastic E&M Form Factors

Elastic e⁻p amplitude

$$\langle P+q | \bar{q}\gamma^{\mu}q | P \rangle = \bar{U}_{P+q} \Big[F_1(Q^2) \gamma^{\mu} + F_2(Q^2) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N} \Big] U_P$$

Sachs Electric $G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2)$
Magnetic $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$

Elastic e^-p cross-section $\bigcirc G_{E,M}$ from ϵ -dep. at fixed $\tau(Q^2)$ ("**Rosenbluth separation**") \bigcirc dominated by G_M at large Q^2 $\bigcirc 2\gamma$ corrections at $Q^2 \gtrsim 1$ GeV²

Polarization transfer: polarized *e*-beam + detect polarization of recoil nucleon (alt.: transverse asymmetry on pol. target) $\bigcirc G_E/G_M$ ratio (only small radiative corrections)

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{\text{Mott}}}{1+\tau} \left[G_E^2 + \frac{\tau}{\epsilon} G_M^2 \right]$$
$$\tau = \frac{Q^2}{4M_N^2} \qquad \epsilon = \left[1 + 2(1+\tau) \tan^2 \frac{\theta}{2} \right]^{-1}$$

$$P_t/P_l \propto G_E/G_M$$

Recent/Ongoing Experiments

Projected new precision on proton & neutron form factors [V. Punjabi et al, EPJ A51: 79 (2015); arXiv: 1503.01452]

Nucleon Form Factors: Open Questions

- Are model descriptions of the nucleon viable ? Nucleon models disagree where data unavailable
- Role of diquark correlations in elastic scattering ? Neutron & proton G_E/G_M at/above Q² = 8 GeV²
- Scale of transition to perturbative QCD ? (F_2/F_1) scaling at large Q²: $Q^2F_{2p}/F_{1p} \stackrel{?}{\propto} \log^2(Q^2/\Lambda^2)$
- What are contributions from u and d flavors? Proton <u>and</u> neutron data needed in wide Q² range

[G.D.Cates, C.W.de Jager, S.Riordan, B.Wojtsekhovski, PRL106:252003, arXiv:1103.1808]

Nucleon Structure from QCD on a Lattice

Challenges at Large Q²

- Multiscale problem: $a \ll p_N^{-1}, Q^{-1}; \quad 4m_\pi^{-1} \lesssim L$
- Discretization effects: O(a) Correction to current operator

$$(V_{\mu})_{I} = [\bar{q}\gamma_{\mu}q] + c_{V} a \underbrace{\partial_{\nu}[\bar{q}i\sigma_{\mu\nu}q]}_{\propto Q}$$

Stochastic noise grows faster with *T* [Lepage'89]: Signal $\langle N(T)\bar{N}(0)\rangle$ $\sim e^{-E_N T}$ Noise $\langle |N(T)\bar{N}(0)|^2\rangle - |\langle N(T)\bar{N}(0)\rangle|^2$ $\sim e^{-3m_{\pi}T}$ Signal/Noise $\sim e^{-(E_N - \frac{3}{2}m_{\pi})T}$

Excited states: boosting "shrinks" the energy gap

$$E_1 - E_0 = \sqrt{M_1^2 + \vec{p}^2} - \sqrt{M_2^2 + \vec{p}^2} < M_1 - M_0$$

• N(~1500): pN \rightarrow 1.5 GeV $\Rightarrow \Delta E = 500 \rightarrow 300$ MeV

SNR reduction at 1 fm/c ~ O(10⁻⁶) (phys.quarks, Q²≈8 GeV²)

Large p_N : no reliable EFT/ChPT for $m\pi$ -, lattice size-extrapolation

Large statistics required to suppress MC noise in lattice correlators

Nucleon Form Factors at High Q² from LQCD

Present QCD Simulation Parameters

- $\sim N_F = 2 + 1$ clover-improved Wilson fermion ensembles (JLab / W&M / LANL / MIT)
- lattice spacing $a \approx 0.07 \div 0.12$ fm
- \bigcirc unphysical light quark masses : $m\pi = 170 \div 280 \text{ MeV}$
- large physical volume L $\gtrsim 3.7 \ (m\pi)^{-1}$

Sergey Syritsyn

Lattice Nucleon Energy & Dispersion Relation (E5)

) "E5" ensemble: $m\pi = 272 \text{ MeV}$, spacing a = 0.073 fm, 266k MC samples

Lattice Nucleon Energy & Dispersion Relation (D6)

) "D6" ensemble: $m\pi = 166 \text{ MeV}$, spacing a = 0.091 fm, 261k MC samples

Nucleon Matrix Element & Form Factor Fits (D5)

Sergey Syritsyn

Nucleon Form Factors at High Q² from LQCD

ICHEP, Bologna, Jun 8, 2022

Results : Nucleon Form Factors

Phenomenology curves : [Alberico et al, PRC79:065204 (2008)]

Nucleon Form Factors at High Q^2 from LQCD

ICHEP, Bologna, Jun 8, 2022

F_{2p}/F_{1p} Ratio, Proton

- Lattice data: 2-state fits
- Phenomenology curves : [Alberico et al, PRC79:065204 (2008)]
- Comparison to experiments (black points)

G_{Ep}/**G**_{Mp} Form Factor Ratio (Proton)

- Lattice data: 2-state fits
- Phenomenology curves : [Alberico et al, PRC79:065204 (2008)]
- Comparison to experiments (black points)

G_{En}/**G**_{Mn} Form Factor Ratio (Neutron)

- Lattice data: 2-state fits
- Phenomenology curves : [Alberico et al, PRC79:065204 (2008)]
- Comparison to experiments (black points)

Sergey Syritsyn

Examine Exc.States in G_{Ep}/G_{Mp}

Robust estimator from nucleon-current correlators: avoid lattice correlators fits to ~Σ exp(-Et)

$$\operatorname{Re} \langle p'\hat{x}|J_t|p\hat{x}\rangle \propto \operatorname{cosh} \frac{\lambda'+\lambda}{2}G_E$$

$$\operatorname{Re} \langle p'\hat{x}|J_y|p\hat{x}\rangle \propto \operatorname{sinh} \frac{\lambda'-\lambda}{2}G_M$$
where
$$\begin{pmatrix} p^{(\prime)} &= m_N \operatorname{sinh} \lambda^{(\prime)} \\ E^{(\prime)} &= m_N \operatorname{cosh} \lambda^{(\prime)} \end{pmatrix}$$

Sergey Syritsyn

Nucleon Form Factors at High Q^2 from LQCD

Summary

Preliminary results for high MC-statistics high-momentum form factors up to $Q^2 \leq 12 \text{ GeV}^2$, two lattice spacings $a \geq 0.07 \text{ fm}$, two pion masses $m\pi \geq 170 \text{ MeV}$ (No quark-disconnected contributions yet)

 Form factor results overshoot experimental data x(2 ... 2.5); G_E/G_M ratios in qualitative agreement *Discretization? Excited states? Non-physical quark masses? Quark-Disconnected contributions?*

Comparison to experiment important to validate lattice methods for computing relativistic nucleon matrix elements Impact on lattice methodology for TMDs, PDFs, DAs calculation

BACKUP

Nucleon Form Factors: Lattice Recipe

Generate lattice ensemble

$$P(A_{\mu}) \propto e^{-S[A_{\mu}]} \prod_{q} \det(\not D + m_{q})$$

Compute nucleon correlation functions

2-point
$$\langle N(\vec{p}', t_{sep}) \, \bar{N}(0) \rangle = \sum_{y} e^{-i\vec{p}'\vec{x}} \langle N_{t_{sep},\vec{y}} \, \bar{N}(0,\vec{0}) \rangle$$
 Quark lines = $(\mathcal{D} + m)^{-1} \cdot \psi$
3-point $\langle N(\vec{p}', t_{sep}) \, \mathcal{O}(\vec{q}, \tau) \, \bar{N}(0) \rangle = \sum_{y,z}^{y} e^{-i\vec{p}'\vec{x} + i\vec{q}\vec{z}} \langle N_{t_{sep},\vec{y}} \, \mathcal{O}_{z,\tau} \, \bar{N}(0,\vec{0}) \rangle$

Extract ground-state matrix elements (2-state fits typical)

$$\langle N(p', t_{\rm sep}) \mathcal{O}(\tau) \, \bar{N}(p, 0) \rangle \sim e^{-E_0'(t_{\rm tsep} - \tau) - E_0 \tau} \left[\langle 0(p') | \mathcal{O} | 0(p) \rangle + \langle 0(p') | \mathcal{O} | 1(p) \rangle e^{-\Delta E_{01} \tau} + \langle 1(p') | \mathcal{O} | 0(p) \rangle e^{-\Delta E_{01}'(t_{\rm sep} - \tau)} + \langle 1(p') | \mathcal{O} | 1(p) \rangle e^{-\Delta E_{01} \tau - \Delta E_{01}'(t_{\rm sep} - \tau)} \right]$$

• Reduce m.e.'s to form factors: fit over momentum combinations, polarization, etc $\langle p', \sigma' | J^{\mu} | p, \sigma \rangle = [\bar{u}' \gamma^{\mu} u] F_1 + [\bar{u}' \frac{i \sigma^{\mu\nu} q_{\nu}}{2m_N} u] F_2$

Nucleon Form Factors at High Q² from LQCD

Accessing Large Q² : Breit Frame on a Lattice

Minimize $E_{in,out}$ for target Q^{2} :

$$Q^{2} = (\vec{p}_{in} - \vec{p}_{out})^{2} - (E_{in} - E_{out})^{2}$$

Back-to-back

$$Q^2 = 4\vec{p}^2$$

For
$$(Q^2)_{max} = 10 \text{ GeV}^2$$

 $|\vec{p}| = \frac{1}{2} \sqrt{Q_{max}^2} \approx 1.6 \text{ GeV}$ $(E_N \approx 1.9 \text{ GeV})$

lattice kinematics for $Q^2 \approx 10 \text{ GeV}^2$ Nucleon momentum ~ Brillouin zone \Rightarrow unknown distortion of effective nucleon Dirac eqn.

$$\langle N\bar{N}\rangle^{-1}(p) \stackrel{?}{=} -ip^{\text{lat}} + m_N$$
$$p^{\text{lat}}_{\mu} = k_{\mu} + O(k^3)$$

 \Rightarrow addl. O(a^2) corrections from lattice nucleon polarization

Results*: Flavor Decomposition

Prior work: Disc.Light & Strange Quark F.F's

N_f=2+1 dynamical fermions, m_π ≈ 320 MeV (the "coarse" JLab Clover ensemble) $|(G_E^{u/d})_{\text{disc}}| \lesssim 0.010 \text{ of } |(G_E^{u-d})_{\text{conn}}|$ $|(G_E^s)_{\text{disc}}| \lesssim 0.005 \text{ of } |(G_E^{u-d})_{\text{conn}}|$

 $|(G_M^{u/d})_{\text{disc}}| \lesssim 0.015 \text{ of } |(G_M^{u-d})_{\text{conn}}|$ $|(G_M^s)_{\text{disc}}| \lesssim 0.005 \text{ of } |(G_M^{u-d})_{\text{conn}}|$

[J. Green, S. Meinel, S.S. et al; PRD92:031501 (2015)]

Nucleon Form Factors at High Q² from LQCD

ICHEP, Bologna, Jun 8, 2022

Disconnected Light, Strange vs. Connected

- D5 ensemble($m\pi$ =280 MeV, a=0.094 fm)
- s-, disconnected u,d- contributions are still small at high Q² up to $\leq 10 \text{ GeV}^2$

$$|F_1^s| \lesssim |(F_1^{u/d})_{\text{disc}}| \lesssim 10\% \text{ of } |F_2^{u,d}|$$
$$|F_2^s| \lesssim |(F_2^{u/d})_{\text{disc}}| \lesssim 20\% \text{ of } |F_2^{u,d}|$$

Nucleon Form Factors at High Q^2 from LQCD