Underlying event measurements at ATLAS

Dominic Hirschbühl

ICHEP 2022 - Bologna 08.07.2022

Overview

ATLAS-CONF-2022-023

ICHEP 2022 - Bologna Dominic Hirschbühl | 08.07.2022

Introduction

Perturbative physics:

- Hard scattering
- Prompt decays
- Parton shower / QED radiation

Soft physics:

- Underlying event
- Hadronisation
- Hadron Decays

Introduction

No sharp boundary between the hard processes and UE.

The underlying event

Activity accompanying the hard scatter

- Is not distinguishable from the hard scatter on an event-by-event basis
- Can be probed using topological observable
- Can include contributions from multi-parton interactions

Drell-Yan processes

- Provide a clean environment
- Here: qq → Z → μ⁺μ⁻ with initial-state radiation (ISR) to give a balancing jet
- No final-state radiation!
- Kinematic distributions in the transverse regions sensitive to soft production models

Analysis setup

Event selection

- Exactly 2 muons with $p_T > 25~{\rm GeV}$ and $|\eta| < 2.4$
- Muons must be from primary vertex and not from heavy quark decays
- 66 GeV < $m_{\mu\mu}$ < 116 GeV to reduce backgrounds
- Tracks: $p_T > 0.5$ GeV and $|\eta| < 2.5$

Background

- Assessed using MC
 - $Z \to \tau \tau$
 - $Z \to t\bar{t}$
 - $WW \rightarrow \mu \nu \mu \nu$
- Assed data driven
 - Multijet background

Analysis strategy

Four regions:

- Toward (Z direction),
- Away (jet direction),
- Transverse max./min with greater/lesser Σp_T

Observables, normalised to angular width of each region:

(using all particles in event, except muons.)

- Normalised charged particle p_T distribution
- *N_{ch}*: Charged particle multiplicity
- Σp_T of charged particles
- Mean p_T of charged particles

Studied in 8 bins of $p_T(Z)$ and two bins of transverse thrust:

$$T_{\perp} = \frac{\sum_{i} |\vec{p_{\mathrm{T},i}} \cdot \hat{n}|}{\sum_{i} |\vec{p_{\mathrm{T},i}}|}$$

ICHEP 2022 - Bologna Dominic Hirschbühl | 08.07.2022

Results

Systematic uncertainties are small and mainly detector-related. Sherpa has worst agreement for N_{ch}

Results

- $\sum p_T$ best described by Herwig++
- mean p_{T} not well modelled by Pythia8
- Same trends for higher $p_T(Z)$

ICHEP 2022 - Bologna Dominic Hirschbühl | 08.07.2022

Different Thrust regions

- *N_{ch}* for low quite different than for high Thrust
- Agreement is worst for both splittings

ICHEP 2022 - Bologna Dominic Hirschbühl | 08.07.2022

Charged particle multiplicities

 N_{ch} is poorly described, but Pythia8 and Herwig++ are better then Sherpa \rightarrow important ingredient for further MC generator tunings

ICHEP 2022 - Bologna Dominic Hirschbühl | 08.07.2022

Correlation of Y meson production with the underlying event in *pp* collisions measured by the ATLAS experiment ATLAS-CONF-2022-023

ICHEP 2022 - Bologna Dominic Hirschbühl | 08.07.2022

Introduction and Motivation

- In heavy ion physics UE may reflect the conditions of the quark-gluon plasma ٠ formation
- Correlations between processes characterized by different momentum scales ٠ and correlations between "hard" and "soft" particle production relatively unexplored
 - Many studies of small systems demonstrating quark-gluon plasma-like signatures in soft physics \rightarrow not many using hard probes
- CMS observed a decrease of the ratio of yields $\Upsilon(nS) / \Upsilon(1S)$ as a function ٠ of multiplicity and studied the effect in different sphericity intervals (JHEP04(2014)103, JHEP11 (2020) 001).

 \rightarrow It was suggested that the decrease in the ratios is an UE effect.

Search for modification of the UE (soft) for different Upsilon states (hard) in *pp* collisions by measuring

 n_{ch} , dn_{ch}/dp_T and $dn_{ch}/d\Delta\phi$, where $\Delta\phi~=~\phi^Y-~\phi^{ch}$

Analysis strategy

Full Run 2 dataset

- Di-muon trigger
- $\Upsilon \rightarrow \mu\mu$ events with
 - $8.2 \le m^{\mu\mu} < 11.8 \, {\rm GeV}$
 - $|y^{\mu\mu}| < 1.6.$
- Charged particle tracks: $0.5 < p_T < 10$ GeV and $|\eta| < 2.5$
- Y candidates in 5 mass regions
 → signal + background fits
- Background in the 'upper-mass' and 'lower-mass' regions are similar in shape
 → sideband subtraction

Pile-up subtraction

Pileup subtraction using **event mixing technique** developed for Eur. Phys. J. C (2020) 80:64

The main idea:

 n_{trk} in a randomly placed window is proportional to the interaction density Interaction density is defined by μ and size of the interaction diamond RMS(z_{vtx})

Since the z_{vtx} distribution is stable over the LHC fill, one can measure the n_{trk} in a window placed at the same location in another event with the same μ .

Pile-up subtraction

- Select a certain event from the events sample → Direct event
- Search for events with the same μ in the same run
- Discard events, where the vertex in the other event is within **15mm** of the Direct event
- Tracks are selected to Mixed events, if they satisfy vertex pointing in longitudinal plane $|\omega| = |(z_0^{trk} z_{vtx}) \sin \theta| < 0.75 \text{ mm},$ w.r.t. vertex of the Direct event
- Repeat procedure 20 times
- Accepted number of pile-up events:

$$\nu \equiv \langle n_{\text{trk}}^{\text{bkg}} \rangle = 2\omega_0 \left. \frac{d^2 n_{\text{trk}}^{\text{mix}}}{d\omega \ d\bar{\mu}} \right|_{\bar{z}_{\text{vtx}}=0} \text{Gauss}(\bar{z}_{\text{vtx}})\bar{\mu},$$

0.75mm Particle production in *pp* collisons

ICHEP 2022 - Bologna Dominic Hirschbühl | 08.07.2022

n_{ch} distributions for Y states

- Open markes before, full markers
 after background subtraction
- Pileup contribution identical for different states
 → only shown for Υ(3S))
- Different Y states have different averages

Mean values of n_{ch} distribution

- Observed a strong difference in the n_{ch} distributions
- Effect strongest at $p_T^{\mu\mu} = 0$
 - $\Upsilon(1S) \Upsilon(2S): 3.6 \pm 0.4$
 - $\Upsilon(1S) \Upsilon(3S): 4.1 \pm 1.1$
- Feed-down of states, mass differences, systematic uncertainties cannot explain the effect

ICHEP 2022 - Bologna Dominic Hirschbühl | 08.07.2022

<u>Kinematic Distributions of Y(1S)-Y(nS)</u>

- Subtracted p_T distributions are consistent in shape with the UE and cannot be described by additional jet activity
- For $\Upsilon(3S)$ at $p_T^{\mu\mu} > 30$ GeV \rightarrow peaks around $\Delta \phi = 0$ and $\Delta \phi = \pi$. Likely explained by feed-down decays $\Upsilon(nS) \to \Upsilon(1S), \chi_b(mP) \to \Upsilon(nS)$

ICHEP 2022 - Bologna Dominic Hirschbühl | 08.07.2022

Conclusion

UE in Z+jet events:

- All tested generators show significant deviations with data for predicting UE activity
- Herwig++ qualitatively performs best
- Important ingredient for future MC generator tuning efforts

UE in Y meson production:

Significant difference in the charged particle multiplicity is observed

- $\Upsilon(1S): < n_{ch} > = 29.5 \pm 0.7$
- Υ(2*S*): 12% less
- Υ(3*S*): 17% less

Differences are strongly momentum-dependent

 \rightarrow reduced for higher $p_T^{\mu\mu}$

