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The importance of beauty (quark) in HEP

Beauty (b) quarks - of m,~ 4.2 GeV - are key elements when exploring fundamental particle
physics at collider experiments and in pheno calculation. Just a few examples:

Experimental window on SM & BSM: Probe of complex QCD mechanics:

high-p; b-jets (p, range ~20 GeV to ~TeV) fromb e m,> Ay, = how to include it in QCD predictions?

quark hadronization are experimental signature of: Benchmark of state-of-the-art MCs and fixed-order

- E =5 Higgs —bb (BR-58%) pheno predictions (pQCD) in a.problelm with multiple
" : scales, many pheno model choices, sizable unknowns

; Example: QCD Flavour Schemes (FS) for Z+b@LO:
| = BSM models 5FS: massless bin proton PDF  4FS: g— bb splitting and m,+0
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High-p. b-jets at hadron colliders: identification technique
b-jet identification (b-tagging) relies on “detectable” characteristics of B-hadrons inside a jet:

Jet axis

= L ong lifetime, 010 " s, and complex decay chains
give secondary/tertiary decays displaced from primary vtX — oecay tenger

=> Reconstruction of B-hadron inv. mass (>5 GeV) using
4-momentum combination of multiple charged hadron

. Secondary vertex
Track impact parameter

= Charged hadron trajectories with impact parameter > 0 f\,
N A & \\\* /%

B or C-hadron

= All information recorded by cutting-edge tracking detectors deployed
as close as possible to the beamline (e.g. ATLAS IBL at ~3 cm)

e e : = Machine-learning (ML) algorithms used to condense tracking & jet
3 mfo for optimal separation b-jets vs light-jets (i.e. w/o b- or c-hadrons)
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High-p, b-jet at hadron colliders: how does it look? ~ ©seeamem
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CMS Experiment at LHC, CERN

Data recorded: Fri Aug 5 02:45:13 2016 CEST i
Run/Event: 278239/ 427634038

Lumi section: 287 :
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e n=-0¢1 candidate in boosted event =
N e CMS, 13 TeV pp collision data, 2016 =

NB: reference scales are in cm
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Can we do better using QCD inspired observables?

OCD nature of b-jets - i.e. different radiation pattern, hadronization details, color flow, etc. -
only marginally considered for b-jets identification = Gan we exploit all this?

e Proposing (for first time) use of QCD inspired observables for b-jet flavour identification

e Tested two jet substructure observables together with ML to maximise flavour info extraction:

Jet Angularities ro19 2009, 0740 and primary Lund Plane (e 201864 p0r)
NB: proof of concept, other observables might also work - e.g. dead-cone? (ature 605. 440 (2022)

o Focus on b-jetsfor p, > 500 GeV & boosted regime — where tracking performance degrades
e fvaluate performance in comparison with state-of-the-art experimental b-tagging algorithms

e Ultimately able to map b-jet substructure patterns to pQCD calculations or ME+PS simulation!


https://doi.org/10.1103/PhysRevD.79.074017
https://doi.org/10.1007/JHEP12(2018)064
https://doi.org/10.1038/s41586-022-04572-w

The experimental setup
Final aim is to compare performance with b-tagging algorithm data from LHC experiments:

e JStart from Z+jets phase space used for CMS Jet Angularity measurements juer o1 20221188
= [—pp decay with p, >26 GeV, In [<2.4,70 GeV <M <110 GeV,p,  >30 GeV
= Anti-k, R=0.4 jet, Pt 500 GeV, |yjet| < 1.1, jet-Z balancing: PT.jet — DT+ -

<0.3

PT jet + DT, put+ p—

|¢Z - ¢jet| >

e Jimulate events pp 13 TeV collisions using Pythia v8.303 LO+PS,
plus hadronization and UE (Herwig v/.2.1 used as cross check)

e [-jetor light-jet flavour assignation using experiment operative definition eric 81 20213
= b-jet label if clustered jet has > 1 b-hadron with p, > 5 GeV within AR = 0.3
= light-jet label if no b-hadron nor c-hadrons with p, > o GeV found in AR = 0.3
Analyze only leading jet in each event, benchmark stat. of 10° b-jets and 10° light-jet

NB: Rivet routine available upon request


https://doi.org/10.1007/JHEP01(2022)188
https://doi.org/10.1140/epjc/s10052-019-7450-8

Analysis of flavour dependence for Jet Angularities
Jet Angularities already proven effective in quark/gluon discrimination, also calculable in pQCD

=> Defined as: s " AN @ Pythia MC
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= Considering: ', _(LHA), A" (Width), A", (Thrust)

Achieved mild discrimination of b vs light jets! .
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Jet grooming: b vs light jet identification against soft radiation

Problem: experiments not able to detect soft hadrons and do not have access to full set of hadron
level jet constituents = is b vs light discrimination stable removing soft radiation?

= Repeat all studies after application of SoftDrop ~ LeadingJet before SO Leading jet after 50
(SD) jet grooming algorithm (1uep 2014. 146 2014)
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= Shape of all jet angularities affected but ROC performance
is stable, quantified using area under the curve (AUC):

tg 2", baseline AUC = 0.639, vs 2, , AUC with SD = 0.635
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Primary Lund-Plane: b vs light jet identification with QCD images

Single angularity distributions have some b vs fight jet but b-tagging is often approached as a truly
multi-variate problem to obtain good separation = can OCD observables serve for this?

The primary Lund-Plane (pLP) builds an “image” of the QCD branching of the jet constituents in the
space log(k.) vs log(1/4,,) = moving from 1D jet Angularity to images with 25x25 pixels
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Combination of multivariate information with Machine-Learning
Optimal multi-dimentional and multi-variate discrimination needs to be R—

tackeled with advanced statistical methods = we will use machine learning

Deep Neeral Network (DNN) with 3 input neurons and 5
neurons x2 hidden layers for optimal combination of the
three Jet Angularities (LHE, Width, Thrust)

Convolutional Neural Network (CNN) with 4 convolution QD
steps and one hidden layer with 200 neurons for optimal G
image analysis of pLP

Training with 60% of the simulated events, 20% for
validation, 20% for performance evaluation
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Benchmarking against ATLAS experiment performance

But do QCD-inspired observables provide interesting input for b-tagging at experiments?
Check high-p, b-tagging performance on same footing of LHC collaborations = two stage approach used

= First set of so-called input-algorithms to obtain “low-level” quantities from reconstructed tracks:
fit of secondary or tertiary decay vertices, decay displacement, invariant mass from track 4-momentum
combination, distance of track minimum approach to beam line (i.e. impact parameter) etc.

= feed to ML algorithm for optimal discrimination
Comparing to ATLAS collaboration which provides
detailed p, and flavour dependent efficiency for fixed L
cut benchmarks of input taggers (SV1, IP3D JetFitter)
and of final Deep Learning algorithm [EPIC 79 (2019) 970]
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2018-01/

What we learnt QCD can do for b-jet flavour identification

0CD inspired observables
as good as track-based

input-algorithms! '

But no B-hadron infonor
decay patterns are used! o

W

= (CD seems to provide o4
mostly new & orthogonal
b-tagging information

which may be integrated
for innovative b-tagging
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Pythia MC; pr it > 500 GeV
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Conclusions and prospects

= In arXiv:2202.05082[hep-ph] we tested for the first time (at the best of our knowledge) the
use of QCD inspired observables for constructing b-jet identification algorithms

= Each individual QCD observable, namely the three Jet Angularities and the primary Lund Plane
images, show some b Vs /ight jet discrimination power = significantly enahanced when
information is combined using ML algorithms, as the tested DNN and CNN classificators

= Performance for b-jet identification using QCD inspired observables, providing orthogonal
information to track-hased b-tagging algorithms, could be a promising field with theory-informed
analysis helping where current detector technology has limitations: e.g. very high-p,

= Future work could lead to measurement of QCD inspired observables in flavour-specific data
samples and, ultimately, to their use as additional inputs for experimental b-jet tagging algorithms
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b-jet identification algorithm based on track reconstruction

transverse IP dy: distance ot: closest approach of track to
PV in the r-¢ projection

longitudinal IP z: distance between z coordinates of the
PV and the track at closest approach in r-¢

‘6 9y

@ introducing sign: “+” (“-”) - track intersects the jet
axis in front of (behind) the PV

@ using significance, e.g. do/0y,

inclusive B/D

IP3D: LLR-based, relies on dp and zo significances as B vertex

well as correlations

Explicit reconstruction of the complete b-hadron decay
chain.

o exploiting topological structure of weak b- and

c-hadron decays inside jet

o uses Kalman filter to find common line between and
position of PV, SV and TV (tertiary, c-hadron decay
vertex)

— approximating b-hadron flight path

@ one track sufficient to built vertex!

— three output nodes corresponding to the b-,c- and light

Explicit reconstruction of a single, inclusive secondary

Edz
pl vertex (SV).
SV @ using all associated, displaced tracks to form vertex
. /Z—\ candidates from track pairs (x> based)
10 Z vk p 3 . . . .
Lf Wl @ vertices compatible with long-lived particles and
e P&\ i material interactions are rejected
!

; @ iterative procedure to combine all tracks from
i 2-track-vertices into single inclusive vertex

1

\

\ — SV1: LLR-based, exploiting vertex mass, energy
fraction, number of 2-track vertices, AR(jet,PV-SV)
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SoftDrop algorithm

min( pe,py;)

SoftDrop groomer: Rew
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Jet Angularities for b-jets and light-jets: Width and Thrust

Pythia MC
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Jet Angularities (LHE)

Herwig MC
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and primary Lund Plane using Herwig

Herwig MC; light-jet
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