Based on: arXiv:2202.05082[hep-ph]

Identification of b-jets using QCD-inspired observables

Oleh Fedkevych⁽¹⁾, Charanjit K. Khosa⁽²⁾, Simone Marzani⁽¹⁾, **Federico Sforza⁽¹⁾**

⁽¹⁾University & INFN Genova (IT), ⁽²⁾University of Bristol (UK)

ICHEP 2022 - Bologna, Italy

The importance of beauty (quark) in HEP

Beauty (*b*) quarks - of $m_b \sim 4.2 \text{ GeV}$ - are key elements when exploring fundamental particle physics at collider experiments and in pheno calculation. Just a few examples:

Experimental window on SM & BSM:

high- p_T *b-jets* (p_T range ~20 GeV to ~TeV) from *b* quark hadronization are experimental signature of:

Probe of complex QCD mechanics:

- $m_b > \Lambda_{QCD} \Rightarrow$ how to include it in QCD predictions?
- Benchmark of state-of-the-art MCs and fixed-order pheno predictions (pQCD) in a problem with multiple scales, many pheno model choices, sizable unknowns

Example: QCD Flavour Schemes (FS) for Z+b@LO:

High- p_T *b-jets* at hadron colliders: *identification technique*

b-jet identification (*b-tagging*) relies on "detectable" characteristics of B-hadrons inside a jet:

 \Rightarrow Long lifetime, $O(10^{-12} s)$, and complex decay chains give secondary/tertiary decays displaced from primary vtx

 \Rightarrow Reconstruction of B-hadron inv. mass (>5 GeV) using 4-momentum combination of multiple charged hadron

 \Rightarrow Charged hadron trajectories with *impact parameter* > 0

 \Rightarrow All information recorded by cutting-edge tracking detectors deployed as close as possible to the beamline (e.g. ATLAS IBL at ~3 cm)

⇒ Machine-learning (ML) algorithms used to condense tracking & jet info for optimal separation *b-jets* vs *light-jets* (*i.e. w/o b- or c-hadrons*)

High- p_T *b-jet* at hadron colliders: *how does it look?*

CMS Experiment at LHC, CERN Data recorded: Fri Aug 5 02:45:13 2016 CEST Run/Event: 278239 / 427634038 Lumi section: 287

000

 $egin{array}{l} {
m AK8 \ jet} \ {
m E}_T=2088 \ {
m GeV} \ \eta=0.63 \ \phi=0.84 \end{array}$

0

pile-up vertices from multiple pp collisions

secondary vertex from b-hadron candidate

-2

-6

-8

 $egin{aligned} \mathrm{muon} \ p_T &= 20.1 \ \mathrm{GeV} \ \eta &= -0.64 \ \phi &= -2.27 \end{aligned}$

0

2

Reconstructed tracks in $H \rightarrow bb$ decay candidate in boosted event CMS, 13 TeV pp collision data, 2016

8

[CMS-DP-2017-032 (2017)]

2

0

-2

-4

10

NB: reference scales are in cm

Can we do better using QCD inspired observables?

QCD nature of b-jets - i.e. different radiation pattern, hadronization details, color flow, etc. - only marginally considered for b-jets identification \Rightarrow Can we exploit all this?

- Proposing *(for first time)* use of QCD inspired observables for *b-jet* flavour identification
- Tested two jet substructure observables together with ML to maximise flavour info extraction: *Jet Angularities* [PRD 79 (2009), 074017] and *primary Lund Plane* [JHEP 2018,64 (2018)] *NB:* proof of concept, other observables might also work - e.g. dead-cone? [Nature 605, 440 (2022)]
- Focus on *b-jets* for $p_T > 500 \text{ GeV}$ & boosted regime \rightarrow *where tracking performance degrades*
- Evaluate performance in comparison with state-of-the-art experimental *b-tagging* algorithms
- Ultimately able to map *b-jet* substructure patterns to pQCD calculations or ME+PS simulation!

The experimental setup

Final aim is to compare performance with *b-tagging* algorithm data from LHC experiments:

- Start from Z+jets phase space used for CMS Jet Angularity measurements [<u>JHEP 01 (2022),188</u>] $\Rightarrow Z \rightarrow \mu\mu$ decay with $p_{T,\mu} > 26 \text{ GeV}$, $|\eta_{\mu}| < 2.4$, 70 GeV $< M_{\mu\mu} < 110 \text{ GeV}$, $p_{T,\mu\mu} > 30 \text{ GeV}$ $\Rightarrow \text{Anti-k}_{T}$, R=0.4 jet, $p_{T,jet} > 500 \text{ GeV}$, $|y_{jet}| < 1.7$, jet-Z balancing: $\left| \frac{p_{T,jet} - p_{T,\mu^+\mu^-}}{p_{T,jet} + p_{T,\mu^+\mu^-}} \right| < 0.3$
- Simulate events pp 13 TeV collisions using Pythia v8.303 LO+PS, plus hadronization and UE (Herwig v7.2.1 used as cross check)
- *b-jet* or *light-jet* flavour assignation using experiment operative definition [EPJC 81 (2021) 3] \Rightarrow *b-jet* label if clustered jet has ≥ 1 *b-hadron* with $p_T \ge 5$ GeV within $\triangle R = 0.3$ \Rightarrow *light-jet* label if no *b-hadron* nor *c-hadrons* with $p_T \ge 5$ GeV found in $\triangle R = 0.3$ Analyze only leading jet in each event, benchmark stat. of 10^5 *b-jets* and 10^5 *light-jet*

NB: Rivet routine available upon request

 $|\phi_Z - \phi_{\text{jet}}| > 2$

Analysis of flavour dependence for Jet Angularities

Jet Angularities already proven effective in quark/gluon discrimination, also calculable in pQCD

 α

 \Rightarrow Defined as:

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in \text{jet}} \left(\frac{p_{\text{T,i}}}{\sum_{j \in \text{jet}} p_{\text{T,j}}} \right)^{\kappa} \left(\frac{\Delta_i}{R} \right)$$

i over all jet constituents; Δ_i distance of *i*th particle from jet axis Infrared & Colinear (IRC) safety requires $\kappa = 1$, $\alpha > 0$ \Rightarrow Considering: $\lambda_{1/2}^1$ (LHA), λ_1^1 (Width), λ_2^1 (Thrust)

Achieved mild discrimination of b vs light jets!

Quantify it using ROC curve, i.e. efficiency beyond a cut:

$$\varepsilon_{B/L} = \frac{1}{N_{B/L}} \int_{\lambda_{\rm cut}}^{1} \frac{dN_{B/L}}{d\lambda} d\lambda$$

Jet grooming: b vs light jet identification against soft radiation

Problem: experiments not able to detect soft hadrons and do not have access to full set of hadron level jet constituents \Rightarrow *is b vs light discrimination stable removing soft radiation?*

 \Rightarrow Repeat all studies after application of SoftDrop (SD) jet grooming algorithm [JHEP 2014, 146 (2014)]

 \Rightarrow Shape of all jet angularities affected but ROC performance is stable, quantified using area under the curve (AUC):

E.g. $\lambda_{1/2}^{1}$ baseline AUC = 0.639, vs $\lambda_{1/2}^{1}$ AUC with SD = 0.635

Primary Lund-Plane: b vs light jet identification with QCD images

Single angularity distributions have some *b* vs light jet but b-tagging is often approached as a truly multi-variate problem to obtain good separation \Rightarrow can QCD observables serve for this?

The primary Lund-Plane (pLP) builds an "image" of the QCD branching of the jet constituents in the space $\log(k_T)$ vs $\log(1/\Delta_{a,b}) \Rightarrow$ moving from 1D jet Angularity to images with 25x25 pixels

Combination of multivariate information with Machine-Learning

Optimal multi-dimentional and multi-variate discrimination needs to be tackeled with advanced statistical methods \Rightarrow we will use machine learning

- Deep Neeral Network (DNN) with 3 input neurons and 5 neurons x2 hidden layers for optimal combination of the three Jet Angularities (LHE, Width, Thrust)
- Convolutional Neural Network (CNN) with 4 convolution steps and one hidden layer with 200 neurons for optimal image analysis of pLP
- Training with 60% of the simulated events, 20% for validation, 20% for performance evaluation

Benchmarking against ATLAS experiment performance

But do QCD-inspired observables provide interesting input for b-tagging at experiments? Check high- p_T b-tagging performance on same footing of LHC collaborations \Rightarrow two stage approach used

 \Rightarrow First set of so-called *input-algorithms* to obtain "low-level" quantities from reconstructed tracks: fit of secondary or tertiary decay vertices, decay displacement, invariant mass from track 4-momentum combination, distance of track minimum approach to beam line (i.e. impact parameter), etc.

 \Rightarrow Feed to ML algorithm for optimal discrimination

Comparing to ATLAS collaboration which provides detailed p_T and flavour dependent efficiency for fixed cut benchmarks of input taggers (SV1, IP3D JetFitter) and of final Deep Learning algorithm [EPJC **79** (2019) 970]

What we learnt QCD can do for b-jet flavour identification

QCD inspired observables as good as track-based input-algorithms!

But no B-hadron info nor decay patterns are used!

 $\Rightarrow QCD seems to provide$ mostly new & orthogonal *b-tagging* information which may be integrated for innovative *b-tagging*

Conclusions and prospects

 \Rightarrow In <u>arXiv:2202.05082[hep-ph]</u> we tested for the first time (at the best of our knowledge) the use of QCD inspired observables for constructing *b-jet* identification algorithms

 \Rightarrow Each individual QCD observable, namely the three Jet Angularities and the primary Lund Plane images, show some *b* vs *light jet* discrimination power \Rightarrow significantly enahanced when information is combined using ML algorithms, as the tested DNN and CNN classificators

 \Rightarrow Performance for *b-jet* identification using QCD inspired observables, providing orthogonal information to track-based *b-tagging* algorithms, could be a promising field with theory-informed analysis helping where current detector technology has limitations: e.g. very high-p_T

 \Rightarrow Future work could lead to measurement of QCD inspired observables in flavour-specific data samples and, ultimately, to their use as additional inputs for experimental *b-jet* tagging algorithms

Extra slides & Backup Material

b-jet identification algorithm based on track reconstruction

transverse IP d_0 : distance of closest approach of track to PV in the r- ϕ projection

longitudinal IP z_0 : distance between z coordinates of the PV and the track at closest approach in r- ϕ

- introducing sign: "+" ("-") track intersects the jet axis in front of (behind) the PV
- using significance, e.g. d_0/σ_{d_0}

IP3D: LLR-based, relies on d_0 and z_0 significances as well as correlations

Explicit reconstruction of the complete *b*-hadron decay chain.

- exploiting topological structure of weak *b* and *c*-hadron decays inside jet
- uses Kalman filter to find common line between and position of PV, SV and TV (tertiary, *c*-hadron decay vertex)
 - \rightarrow approximating b-hadron flight path
- one track sufficient to built vertex!

 \rightarrow three output nodes corresponding to the *b*-,*c*- and light

Explicit reconstruction of a *single, inclusive* secondary vertex (SV).

- using all associated, displaced tracks to form vertex candidates from track pairs (χ² based)
- vertices compatible with long-lived particles and material interactions are rejected
- iterative procedure to combine all tracks from 2-track-vertices into single inclusive vertex
- \rightarrow SV1: LLR-based, exploiting vertex mass, energy fraction, number of 2-track vertices, ΔR (jet, PV-SV)

SoftDrop algorithm

Jet Angularities for b-jets and light-jets: Width and Thrust

Jet Angularities (LHE) and primary Lund Plane using Herwig

