The strong coupling at the tau mass from a new tau vector isovector spectral function

Diogo Boito

University of São Paulo
with Maarten Golterman, Kim Maltman, Santi Peris, Marcus Rodrigues and Wilder Schaaf

DB, Golterman, Maltman, Peris, Rodrigues, Schaaf, arXiv:2012.10440, PRD 103 (2021)

strong coupling from tau decays

Lower energies

Higher energies

Larger coupling, more sensibivily to QCD corrections.
Larger non-perkurbakive physics (OPE, DVS),
Problems with pe. Eheory (renormalons,...).

Smaller coupling, less sensitive to QCD corrections, more precision required from exp. small contamination from nonperturbative physics, pe. series is "almost" convergent

strong coupling from tau decays

Lower energies

Larger coupling, more sensilivily to QCD corrections.
Larger non-perturbative physics (OPE, DVS),
Problems with pl. Eheory (renormalons,...).
adapted from PDG '19

Higher energies
Smaller coupling, less sensitive to QCD corrections, more precision required from exp. small contamination from nonperturbative physics, pe. series is "almost" convergent

strong coupling from tau decays

Massless (V\&A) correlators

Braaten, Narison, and Pish '92

Sum rules (using Cauchy's theorem)

$$
\frac{1}{s_{0}} \int_{0}^{s_{0}} d s w(s) \frac{1}{\pi} \operatorname{Im} \Pi(s)=-\frac{1}{2 \pi i s_{0}} \oint_{\substack{\text { spectral function } \\ \rho(s)=\frac{1}{\pi} \operatorname{Im} \Pi(s)}} d z w(z) \Pi(z)
$$

strong coupling from tau decays

Massless (V\&A) correlators

Braaten, Narison, and Pich '92

Sum rules (using Cauchy's theorem)

$$
\frac{1}{s_{0}} \int_{0}^{s_{0}} d s w(s) \frac{1}{\pi} \operatorname{Im} \Pi(s)=-\frac{1}{2 \pi i s_{0}} \oint_{\substack{\text { experiment } \\ \text { spectral function } \\ \rho(s)=\frac{1}{\pi} \operatorname{Im} \Pi(s)}} d z w(z) \Pi(z)
$$

theory overview

$$
\begin{aligned}
& \frac{-1}{2 \pi i} \oint_{|z|=s_{0}} d z w(z) \Pi(z) \approx S_{\mathrm{EW}} N_{c}\left(1+\delta^{(0)}+\delta_{\mathrm{EW}}+\delta_{\mathrm{OPE}}+\delta_{\mathrm{DVs}}\right) \\
& \text { Perturbation theory (OPE) } \quad \sum_{n=0}^{4}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{k=0}^{n+1} c_{n, k} \log ^{k}\left(\frac{-s}{\mu^{2}}\right)+\frac{C_{4}}{Q^{4}}+\frac{C_{6}}{Q^{6}}+\frac{C_{8}}{Q^{8}}+\cdots
\end{aligned}
$$

	Gorishnii, Kataev, Larin '9l Surguladze\&Samuel '9।	Baikov, Chetyrkin, Kühn ‘08
α_{s}^{1}	α_{s}^{2}	α_{s}^{3}

$$
\delta_{\mathrm{FO}}^{(0)}=0.1012+0.0533+0.0273+0.0133=0.1952
$$

(fixed order perturbation theory)

theory overview

$$
\frac{-1}{2 \pi i} \oint_{|z|=s_{0}} d z w(z) \underset{\text { theory }}{\Pi(z)} \approx S_{\mathrm{EW}} N_{c}\left(1+\delta^{(0)}+\delta_{\mathrm{EW}}+\delta_{\mathrm{OPE}}+\delta_{\mathrm{DVs}}\right)
$$

Perturbation theory (OPE)

$$
\sum_{n=0}^{4}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{k=0}^{n+1} c_{n, k} \log ^{k}\left(\frac{-s}{\mu^{2}}\right)+\frac{C_{4}}{Q^{4}}+\frac{C_{6}}{Q^{6}}+\frac{C_{8}}{Q^{8}}+\cdots
$$

	Gorishnii, Kataev, Latin 'gl Surguladze\&Samuel 'gl	Baikov, Chetyrkin, Kühn ‘08
α_{s}^{1}	α_{s}^{2}	α_{s}^{3}

pt. correction is $\mathbf{\sim 2 0 \%}$
$\delta_{\mathrm{FO}}^{(0)}=0.1012+0.0533+0.0273+0.0133=0.1952$
(fixed order perturbation theory)

Duality Violations

$$
\rightarrow \rho_{\mathrm{DV}}(s)=e^{-\delta-\gamma s} \sin (\alpha+\beta s)
$$

Ansatz based on widely accepted assumptions about QCD: Regge behaviour and large- N_{c}. Main expected corrections: logarithmic and powers of $1 / \mathrm{s}$.

theory: FOPT vs CIPT

Fixed Order (FO) or Contour Improved (CI) lead to different α_{s} values theoretical uncertainty?

Discrepancy between FOPT and CIPT (asymptotic separation): linked to an incompatibility of CIPT with the standard form of the OPE.

theory: FOPT vs CIPT

Fixed Order (FO) or Contour Improved (CI) lead to different α_{s} values theoretical uncertainty?

$\delta_{\mathrm{FO}}^{(0)}=0.1012+0.0533+0.0273+0.0133=0.1952$
$\delta_{\mathrm{CI}}^{(0)}=0.1375+0.0262+0.0104+0.0072=0.1814$

Discrepancy between FOPT and CIPT (asymptotic separation): linked to an incompatibility of CIPT with the standard form of the OPE.

Resolution to this problem: subtraction of the leading IR renormalon (Gluon condensate) which gives leading contribution to asymptotic separation

Benitez-Rathgeb, DB, A. Hoang, M. Jamin, JHEP (2022), 2202. I 0957

Renormalon-free gluon-condensate scheme (RF GC Scheme) results:
Benitez-Rathgeb, DB, A. Hoang, M. Jamin, 2207.0 I I I 6

analysis strategy

$$
\frac{-1}{2 \pi i} \oint_{|z|=s_{0}} d z \underset{\text { Eheory }}{w(z) \Pi(z) \approx S_{\mathrm{EW}} N_{c}\left(1+\delta^{(0)}+\delta_{\mathrm{EW}}+\delta_{\mathrm{OPE}}+\delta_{\mathrm{DV}}\right)}
$$

Desired properties from the choice of weights

1. Good perturbative behaviour.
2. Small condensate contributions.
3. Suppression of DVs.
analysis strategy

$$
\frac{-1}{2 \pi i} \oint_{|z|=s_{0}} d z w(z) \Pi(z) \approx S_{\mathrm{EW}} N_{c}\left(1+\delta^{(0)}+\delta_{\mathrm{EW}}+\delta_{\mathrm{OPE}}+\delta_{\mathrm{DV}}\right)
$$

Desired properties from the choice of weights

1. Good perturbative behaviour.
2. Small condensate contributions.
3. Suppression of CVs.

Choice of weights
$w_{0}(y)=1$
$w_{2}(y)=1-y^{2}$
$w_{3}(y)=(1-y)^{2}(1+2 y)$
$w_{4}(y)=\left(1-y^{2}\right)^{2}$

Tiny condensate contributions, sensitive to CVs
Only D=6
Only $\mathrm{D}=6$ and 8 Tau kinematical Moment $\left(R_{\tau}\right)$
Only $D=6$ and 10

Suppression of DVs comes with the price of additional (unknown) higher dim. contributions from the OPE.

DV strategy

DB, M. Golterman, K. Maltman, S. Peris, M. V. Rodrigues and W. Schaaf, 2012.10440

- Accepl some DVs, serongly suppress contamination on the OPE side.

Truncated OPE strategy

(1 A Pich, A. Rodriguez-Sanchez 1605.06830
Davier, Höcker, Malaescu, Yuan, Zhang 1312.1501

- Suppress DVs but need to ignore the higher order contributions on the OPE side (koo many parameters).
(Serious issues with the truncation of the OPE) DB, M. Golterman, K. Maltman, S. Peris '16 '19

Data

anatomy of the ALEPH and OPAL data sets

- V channel dominated by $\tau \rightarrow 2 \pi+\nu_{\tau}$ and $\tau \rightarrow 4 \pi+\nu_{\tau}$
- "Residual" channels subdominant (but important for α_{s} !)
- Monte Carlo (MC) inputs for several channels

Recently measured channels in $e^{+} e^{-}$can be used to improve the vector channel

anatomy of the ALEPH and OPAL data sets

- V channel dominated by $\tau \rightarrow 2 \pi+\nu_{\tau}$ and $\tau \rightarrow 4 \pi+\nu_{\tau}$
- "Residual" channels subdominant (but important for α_{s} !)
- Monte Carlo (MC) inputs for several channels

Recently measured channels in $e^{+} e^{-}$can be used to improve the vector channel

- Combined data for 2π and 4π channels from ALEPH \& OPAL Data combination: same algorithm used in R-daka combination for muon 9-2.

```
Keshavarzi, Nomura,Teubner '18
```

- Exp. data only: 7 residual channels from $e^{+} e^{-}$using CVC (conserved vector current) and BaBar data for $\tau \rightarrow K K_{S} \nu_{\tau}$

Data sets from: BABAR, SND and CMD-3 (last ~ 5 yrs)
No Monke Carlo inputs; IB corrections to CVC negligible

- Results updated for recent branching ratio measurements

improved vector isovector spectral function

Combination of $2 \pi+4 \pi$ channels
Good χ^{2} both locally and globally, no χ^{2} inflation needed

No Monte Carlo input

Original data sets from: BABAR, SND and CMD-3

new vector-isovector spectral function

- Total
- $2 \pi+4 \pi$
\triangle Residual

Results

strong coupling from the new spectral function

Several fits, single moments or in combination

Many fit windows: $\left[s_{\min }, m_{\tau}^{2}\right]$
Consistency between different fits (α_{s}, condensates, DV params.)

strong coupling from the new spectral function

Several fits, single moments or in combination

Many fit windows: $\left[s_{\min }, m_{\tau}^{2}\right]$
Consistency between different fits (α_{s}, condensates, DV params.)

strong coupling from the new spectral function

Consistency between different fits

mom.	α_{s}	$c_{6}\left[\mathrm{GeV}^{6}\right]$
w_{0}	$0.3077(65)$	--
$w_{0} \& w_{2}$	$0.3091(69)$	$-0.0059(13)$
$w_{0} \& w_{3}$	$0.3080(70)$	$-0.0070(12)$
$w_{0} \& w_{4}$	$0.3079(70)$	$-0.0068(12)$

$$
w_{0}(y)=1
$$

$$
w_{2}(y)=1-y^{2}
$$

$$
w_{3}(y)=(1-y)^{2}(1+2 y)
$$

$$
w_{4}(y)=\left(1-y^{2}\right)^{2}
$$

strong coupling from the new spectral function

$$
w_{0}(y)=1
$$

Consistency between different fits

mom.	α_{s}	$c_{6}\left[\mathrm{GeV}^{6}\right]$
w_{0}	$0.3077(65)$	--
$w_{0} \& w_{2}$	$0.3091(69)$	$-0.0059(13)$
$w_{0} \& w_{3}$	$0.3080(70)$	$-0.0070(12)$
$w_{0} \& w_{4}$	$0.3079(70)$	$-0.0068(12)$

$$
w_{2}(y)=1-y^{2}
$$

$$
w_{3}(y)=(1-y)^{2}(1+2 y)
$$

$$
w_{4}(y)=\left(1-y^{2}\right)^{2}
$$

Final value
pt. series truncation, scale variation
$\frac{1}{8}$

$$
\begin{aligned}
\alpha_{s}\left(m_{\tau}\right) & =0.3077 \pm 0.0065_{\text {stat }} \pm 0.0038_{\text {pert }} \\
& =0.3077 \pm 0.0075 \quad\left(n_{f}=3, \text { FOPT }\right)
\end{aligned}
$$

stability of the DV ansatz

leading corrections to DV ansatz

$$
\rho_{\mathrm{DV}}(s)=\left(1+\frac{c}{s}+\cdots\right) e^{-\delta-\gamma s} \sin (\alpha+\beta s)
$$

Fits including the leading DV correction (scan of fits with fixed value of c)

Leading corrections to DV ansatz

$$
\rho_{\mathrm{DV}}(s)=\left(1+\frac{c}{s}+\cdots\right) e^{-\delta-\gamma s} \sin (\alpha+\beta s)
$$

Fits including the leading DV correction (scan of fits with fixed value of c)

Leading corrections to DV ansatz

$$
\rho_{\mathrm{DV}}(s)=\left(1+\frac{c}{s}+\cdots\right) e^{-\delta-\gamma s} \sin (\alpha+\beta s)
$$

Fits including the leading DV correction (scan of fits with fixed value of c)

Results are very stable against this modification of the Ansatz

Results at m_{τ}

$$
\begin{aligned}
\alpha_{s}\left(m_{\tau}\right) & =0.3077 \pm 0.0065_{\text {stat }} \pm 0.0038_{\text {pert }} \\
& =0.3077 \pm 0.0075 \quad\left(n_{f}=3, \text { FOPT }\right)
\end{aligned}
$$

Results evolved to m_{Z}

$$
\alpha_{s}\left(m_{Z}\right)=0.1171 \pm 0.0010
$$

$$
\left(\overline{\mathrm{MS}}, N_{f}=5\right)
$$

- Vector channel is special: CVC allows improvement near tau kin. end point.
- New vector isovector spectral function purely based on data, no MC input.
- Analysis can be improved with new data for the $2 \pi+4 \pi$ channels only!

- Improvements of this type not possible for the axial channel (no axial photon).
- Final result from the new vector spectral function is competitive.

$$
\alpha_{s}\left(m_{Z}\right)=0.1171 \pm 0.0010
$$

Extra

reconciling FOPT and CIPT: renormalon free (RF) scheme for the Gluon cond.

 General structure of the gluon condensate (GC) pole is known in QCD at NLO$$
\bar{a}_{Q} \equiv \frac{\beta_{1}}{2 \pi} \alpha_{s}(Q)
$$

normalizakion not determined
by theory (app. known)

$$
\begin{array}{rlr}
B_{4,0}(u)= & {\left[1+\bar{c}_{4,0}^{(1)} \bar{a}_{Q}\right] \frac{N_{4,0}}{(2-u)^{1+4 \hat{b}_{1}}} \quad} & N_{4,0}\left(1+\bar{c}_{4,0}^{(1)} \bar{a}_{Q}\right) \sum_{\ell=1}^{\infty} r_{\ell}^{(4,0)} \bar{a}_{Q}^{\ell} \quad
\end{array} \quad r_{\ell}^{(4,0)}=\left(\frac{1}{2}\right)^{\ell+4 \hat{b}_{1}} \frac{\Gamma\left(\ell+4 \hat{b}_{1}\right)}{\Gamma\left(1+4 \hat{b}_{1}\right)}
$$

Infrared-subtracted scheme for the GC condensate ("short distance scheme") Benitez-Rathgeb, DB, A. Hoang, M. Jamin, 2202. 10957

$$
\left\langle\bar{G}^{2}\right\rangle^{(n)} \equiv\left\langle G^{2}\right\rangle\left(R^{2}\right)-R^{4} \sum_{\ell=1}^{n} N_{g} r_{\ell}^{(4,0)} \bar{a}_{R}^{\ell}
$$

reconciling FOPT and CIPT: renormalon free (RF) scheme for the Gluon cond. General structure of the gluon condensate (GC) pole is known in QCD at NLO

$$
\bar{a}_{Q} \equiv \frac{\beta_{1}}{2 \pi} \alpha_{s}(Q)
$$

normalizakion not determined
by Cheory (app. known)

$$
\begin{aligned}
& B_{4,0}(u)= {\left[1+\bar{c}_{4,0}^{(1)} \bar{a}_{Q}\right] \frac{N_{4,0}}{(2-u)^{1+4 \hat{b}_{1}}} \quad N_{4,0}\left(1+\bar{c}_{4,0}^{(1)} \bar{a}_{Q}\right) \sum_{\ell=1}^{\infty} r_{\ell}^{(4,0)} \bar{a}_{Q}^{\ell} } \\
& \text { determined on general } \\
& \text { grounds from QCD } \text { contribution of the } G C \\
& \text { singulariky bo the } \\
& \text { perturbakive series }
\end{aligned}
$$

$$
r_{\ell}^{(4,0)}=\left(\frac{1}{2}\right)^{\ell+4 \hat{b}_{1}} \frac{\Gamma\left(\ell+4 \hat{b}_{1}\right)}{\Gamma\left(1+4 \hat{b}_{1}\right)}
$$

coefficients that diverge faclorially are known

Infrared-subtracted scheme for the GC condensate ("short distance scheme") Benitez-Rathgeb, DB, A. Hoang, M. Jamin, 2202. 10957
to be expanded (coherently)
IR scale
$\left\langle\bar{G}^{2}\right\rangle^{(n)} \equiv\left\langle G^{2}\right\rangle\left(R^{2}\right)-R^{4} \sum_{\ell=1}^{n} N_{g} r_{\ell}^{(4,0)} \bar{a}_{R}^{\ell}$

reconciling FOPT and CIPT: renormalon free (RF) scheme for the Gluon cond.

 General structure of the gluon condensate (GC) pole is known in QCD at NLO$$
\bar{a}_{Q} \equiv \frac{\beta_{1}}{2 \pi} \alpha_{s}(Q)
$$

normalization not determined
by theory (app. known)

$$
\begin{aligned}
B_{4,0}(u)= & {\left[1+\bar{c}_{4,0}^{(1)} \bar{a}_{Q}\right] \frac{N_{4,0}}{(2-u)^{1+4 \hat{b}_{1}}} \rightarrow }
\end{aligned} \begin{array}{cc}
N_{4,0}\left(1+\bar{c}_{4,0}^{(1)} \bar{a}_{Q}\right) \sum_{\ell=1}^{\infty} r_{\ell}^{(4,0)} \bar{a}_{Q}^{\ell} \\
& \text { determined on general } \\
\text { grounds from QCD } & \text { contribution of the GC } \\
& \text { singularily bo the } \\
\text { perturbative series }
\end{array}
$$

$$
r_{\ell}^{(4,0)}=\left(\frac{1}{2}\right)^{\ell+4 \hat{b}_{1}} \frac{\Gamma\left(\ell+4 \hat{b}_{1}\right)}{\Gamma\left(1+4 \hat{b}_{1}\right)}
$$

coefficients that diverge factorially are known

Infrared-subtracted scheme for the GC condensate ("short distance scheme")
Benitez-Rathgeb, DB, A. Hoang, M. Jamin, 2202. I 0957

$$
\left\langle\bar{G}^{2}\right\rangle^{(n)} \equiv\left\langle G^{2}\right\rangle\left(R^{2}\right)-R^{4} \sum_{\ell=1}^{n} N_{g} r_{\ell}^{(4,0)} \bar{a}_{R}^{\ell}
$$

Its more convenient to work with scale invariant GC

$$
\left\langle\bar{G}^{2}\right\rangle^{(n)} \equiv\left\langle G^{2}\right\rangle^{\mathrm{RF}}-R^{4} \sum_{\ell=1}^{n} N_{g} r_{\ell}^{(4,0)} \bar{a}_{R}^{\ell}+N_{g} \bar{c}_{0}\left(R^{2}\right)
$$

$$
\frac{d}{d \log R^{2}}\left\langle G^{2}\right\rangle^{\mathrm{RF}}=0 \quad \text { scale invariant }
$$

Borel sum unchanged, for any value of the norm. Minimal scheme.

reconciling FOPT and CIPT

The renormalon-free scheme for the gluon condensate is able to reconcile FO and CIPT results
Benitez-Rathgeb, DB, A. Hoang, M. Jamin, 2207.0 I I I6

We can now consistently average the two results to obtain

$$
\alpha_{s}\left(m_{\tau}\right)=0.3120 \pm 0.0082
$$

new vector isovector spectral function
Combination of $2 \pi+4 \pi$ channels
Good χ^{2} both locally and globally, no χ^{2} inflation needed

DB, Golterman, Maltman, Peris, Rodrigues and Schaaf, arXiv:20I2.I 0440

new vector isovector spectral function

7 residual channels extracted from $e^{+} e^{-}$data + BaBar data for $\tau \rightarrow K K_{S} \nu_{\tau}$
Dramatic improvement in errors for higher multiplicity modes (near end point)

No Monte Carlo input

Original data sets from: BABAR, CMD-3 and SND (results from 16 papers)

new vector isovector spectral function

Combined $2 \pi+4 \pi$ (ALEPH and OPAL) + residual channels from data 99.95% of the Branching Fraction covered
new vector-isovector spectral function

- Total
- $2 \pi+4 \pi$
- Residual

stability of fit parameters

