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Sum rules (using Cauchy’s theorem)

strong coupling from tau decays
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Duality Violations

DB, Caprini, Golterman,  Maltman, Peris, PRD ’18

Ansatz based on widely accepted assumptions about QCD: Regge behaviour and 
large-Nc. Main expected corrections: logarithmic and powers of 1/s.

⇢DV(s) = e����s sin(↵+ �s)
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theoretical uncertainty?

theory: FOPT vs CIPT

Discrepancy between FOPT and CIPT (asymptotic separation): linked to an 
incompatibility of CIPT with the standard form of the OPE.

Hoang and Regner ’20. ‘21

Fixed Order (FO) or Contour Improved (CI) lead to different        values↵s
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�1

s �2

s �3

s �4

s

⇥(0)
FO

= 0.1012 + 0.0533 + 0.0273 + 0.0133 = 0.1952�(0)
FO

= 0.1014 + 0.0535 + 0.0275 + 0.0134 = 0.1959

�(0)
CI

= 0.1375 + 0.0262 + 0.0104 + 0.0072 = 0.1814

theoretical uncertainty?

theory: FOPT vs CIPT

Discrepancy between FOPT and CIPT (asymptotic separation): linked to an 
incompatibility of CIPT with the standard form of the OPE.

Hoang and Regner ’20. ‘21

Fixed Order (FO) or Contour Improved (CI) lead to different        values↵s
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4

Resolution to this problem: subtraction of the leading IR renormalon
(Gluon condensate) which gives leading contribution to asymptotic separation

Renormalon-free gluon-condensate scheme (RF GC Scheme) results:
Benitez-Rathgeb, DB, A. Hoang, M. Jamin, JHEP (2022), 2202.10957

Benitez-Rathgeb, DB, A. Hoang, M. Jamin, 2207.01116 
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1. Good perturbative behaviour.
2. Small condensate contributions.
3. Suppression of DVs.

analysis strategy 5

⇡ Nc(1 + �(0) + �EM + �OPE + �DVs)⇡ Nc(1 + �(0) + �EM + �OPE + �DVs)EW
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Desired properties from the choice of weights
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Desired properties from the choice of weights

Choice of weights

Tiny condensate contributions, sensitive to DVs 

Only D=6

Only D=6 and 8

Only D=6 and 10

Tau kinematical Moment

DB, Cata, Golterman, Jamin, Maltman ’11, Beneke, DB, Jamin ’12, DB, M. Golterman, K. Maltman, S. Peris ’16
DB F Oliani ’20 

w0(y) = 1

w2(y) = 1� y2

w3(y) = (1� y)2(1 + 2y)

w4(y) = (1� y2)2
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Suppression of DVs comes with the price of additional 
(unknown) higher dim. contributions from the OPE.

DV strategy

-Accept some DVs, strongly 
suppress contamination on the 
OPE side.

- Suppress DVs but need to 
ignore the higher order 
contributions on the OPE side 
(too many parameters).

A Pich, A. Rodriguez-Sanchez 1605.06830 DB, M. Golterman, K. Maltman, S. Peris,  

M. V. Rodrigues and W. Schaaf, 2012.10440 


(Serious issues with the truncation of the OPE) 
DB, M. Golterman, K. Maltman, S. Peris ’16 ‘19

Truncated OPE strategy

analysis strategy 6

Davier, Höcker, Malaescu, Yuan, Zhang 1312.1501 
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Data



anatomy of  the ALEPH and OPAL data sets

V
Davier et al [ALEPH] '14  Ackerstaff et al [OPAL] '98  

Recently measured channels in           can be 
used to improve the vector channel

e+e�
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V

• V channel dominated by ⌧ ! 2⇡ + ⌫⌧ and ⌧ ! 4⇡ + ⌫⌧

• “Residual” channels subdominant (but important for ↵s!)

• Monte Carlo (MC) inputs for several channels
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Figure 5: The vector and axial-vector spectral functions. Shown are the sums of all contributing
channels as data points (upper two plots). Some exclusive contributions are shown as shaded
areas. The näıve parton model prediction is shown as dashed line, while the solid line depicts the
perturbative, massless QCD prediction for αs(m2

Z ) = 0 .122 . The error bars include statistical
and systematic uncertainties. The pion pole is subtracted from the axial-vector spectrum. The
lower plot shows the correlations of the two spectral functions in continuous gray-levels from
white to black which correspond to the correlations in percent from −100 % to +100 %. The
contour lines are drawn in equidistant steps of 20 %.
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MC
MC

MC

V

• V channel dominated by ⌧ ! 2⇡ + ⌫⌧ and ⌧ ! 4⇡ + ⌫⌧

• “Residual” channels subdominant (but important for ↵s!)

• Monte Carlo (MC) inputs for several channels
<latexit sha1_base64="nCs2UIAL2t0ElqhVVncrD1q6qD4="></latexit>

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5
s (GeV2)

v 1(
s)

ALEPH

Perturbative QCD (massless)

Parton model prediction

ππ0

π3π0,3ππ0,6π(MC)

ωπ(MC),ηππ0(MC),KK0(MC)

πKK– (MC)

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
s (GeV2)

v(
s)

OPAL
π π0

3π π0, π 3π0

MC corr.
perturbative QCD (massless)
naïve parton model

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
s (GeV2)

a(
s)

OPAL
3π, π 2π0

3π 2π0

MC corr.
perturbative QCD (massless)
naïve parton model

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

0

1

2

3

0 1 2 3
-100 %

-80 %

-60 %

-40 %

-20 %

0 %

20 %

40 %

60 %

80 %

100 %
s (

G
eV

2 ) [
ax

ia
l-v

ec
to

r]

s (GeV2) [vector]

s (
G

eV
2 ) [

ve
ct

or
]

s (GeV2) [axial-vector]
0 1 2 3

Figure 5: The vector and axial-vector spectral functions. Shown are the sums of all contributing
channels as data points (upper two plots). Some exclusive contributions are shown as shaded
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Combined data for       and      channels from ALEPH & OPAL

Exp. data only: 7 residual channels from         using CVC (conserved vector 
current)          

Results updated for recent branching ratio measurements

e+e�
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Data combination: same algorithm used in R-data 
combination for muon g-2.

Keshavarzi, Nomura, Teubner '18

new vector isovector spectral function 8

and BaBar data for ⌧ ! KKS⌫⌧
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No Monte Carlo inputs;       IB corrections to CVC negligible 
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new vector-isovector spectral function

improved vector isovector spectral function 9
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1331 Iðw0Þ
exp ðs0Þ and I

ðw4Þ
exp ðs0Þ. The results for those parameters also

1332 determined in the earlier fits also show good consistency
1333 with the values obtained in those earlier fits, reported in
1334 Eqs. (4.1) and (4.3). In addition, the values for the OPE
1335 coefficient c6 shown in Tables Vand VI are consistent with
1336 those shown in Table IV. This constitutes an additional
1337 nontrivial consistency check.
1338 We end this subsection with a comment. For reasons
1339 already explained, we did not construct the axial equivalent
1340 of the new inclusive spectral function ρud;V obtained in
1341 Sec. III, and thus did not carry out simultaneous fits to the V
1342 and A spectral functions. This precludes us from testing
1343 consistency between vector and axial channels, and from
1344 carrying out tests based on the Weinberg sum rules, as we
1345 did in Refs. [8,11,12]. Here we point out that such tests
1346 were always successful in the separate analyses of the
1347 ALEPH and OPAL nonstrange inclusive spectral functions.
1348 We also note that our most precise results for αs were
1349 always obtained from purely V channel fits.

1350 C. Analysis

1351 To finalize our result for αsðmτÞ, an estimate is required
1352 for the error resulting from the use of the four- or five-
1353 loop-truncated perturbation theory. This is obtained
1354 following the approach outlined at the end of Sec. II C.

1355 We focus on the single-weight fit to Iðw0Þ
exp ðs0Þ with

1356 smin ¼ 1.5490 GeV2.
1357 It turns out that among the various strategies for
1358 estimating this error discussed in Sec. II C, varying c51
1359 by $50% around the central value c51 ¼ 283 yields the
1360 largest, and thus most conservative, estimate of the trun-
1361 cation error. Symmetrizing the slightly asymmetric result
1362 produces an uncertainty of $0.0026 on αsðmτÞ. Alternate
1363 error estimates based on removing order-α5s terms (i.e.,
1364 setting c5m ¼ 0), or removing both order-α4s and order-α5s
1365 terms (i.e., setting both c4m ¼ 0 and c5m ¼ 0) lead to
1366 differences equal to or smaller than the differences obtained
1367 from the 50% variation in c51 noted above.
1368 These observations apply to the perturbative represen-

1369 tation for Iðw0Þ
th ðs0Þ, and do not necessarily apply to

1370spectral moments with other weights. Since moments
1371with different weights have different perturbative
1372behaviors [43,44], we will take the difference between
1373the values of αs in Eqs. (4.1) and (4.3) to reflect an
1374independent source of perturbative error. We multiply this
1375difference by a factor two to take into account the fact that
1376one of the two weights entering the fit leading to
1377Eq. (4.3), w0, was also used in obtaining the results
1378quoted in Eqs. (4.1). This leads to an additional pertur-
1379bative uncertainty of $0.0028 on αs.
1380Combining the statistical error of Eq. (4.1) and the
1381two perturbative uncertainties discussed above in
1382quadrature, we obtain our final result for αs at the τ mass
1383scale:

αsðmτÞ ¼ 0.3077$ 0.0065stat $ 0.0038pert

¼ 0.3077$ 0.0075 ðnf ¼ 3; FOPTÞ; ð4:5Þ

13841385where the subscripts “stat" and “pert” refer to the statistical
1386and the perturbative error, respectively.
1387As we explained in Sec. II, the τ scale is sufficiently
1388low that nonperturbative effects are expected to be

1389potentially non-negligible. For Iðw0Þ
exp ðs0Þ nonperturbative

1390contributions are generated by DVs, corresponding to the
1391second term on the right-hand side of Eq. (2.11). It is
1392interesting to quantify these effects. Even though the
1393moment is dominated by perturbation theory, we find that

1394the nonperturbative part of Iðw0Þ
th ðs0Þ, which is the moment

1395most sensitive to nonperturbative effects, oscillates with
1396an amplitude typically of order 20% of the αs-dependent
1397part of the perturbative contribution (obtained by sub-
1398tracting the αs-independent parton-model piece) with
1399varying s0.
1400The nonperturbative effect is thus small but significant,
1401and this is not surprising. The nonperturbative part
1402accounts for the oscillation seen in the spectral function
1403in Fig. 8 (red curve), which cannot be accounted for by the
1404OPE (green dashed curve). We believe that it is unlikely
1405that any variation of the DV ansatz (2.12) that does an
1406equally good job of fitting the data would lead to a variation

TABLE VI. Results of block-diagonal fits to Iðw0Þ
exp ðs0Þ and Iðw4Þ

exp ðs0Þ employing the combined spectral function
with 68 clusters, with smax ¼ 3.0574 GeV2, smin in GeV2, β and γ in GeV−2, c6 in GeV6, c10 in GeV10. For each fit,
every third value of Iðw0Þ

exp ðs0Þ and Iðw3Þ
exp ðs0Þ was used, starting from s0 ¼ smin.

smin Q2=dof αsðmτÞ δ γ α β 102c6 102c10

1.5490 2.89=7 0.3069(70) 3.37(34) 0.66(21) −1.79ð62Þ 4.04(33) −0.69ð12Þ 1.56(33)
1.5863 1.80=7 0.3065(74) 3.37(34) 0.66(21) −1.87ð73Þ 4.09(38) −0.70ð13Þ 1.60(38)
1.6136 1.90=5 0.3097(83) 3.38(35) 0.64(21) −1.52ð84Þ 3.91(44) −0.64ð16Þ 1.41(48)
1.6479 1.70=5 0.3076(82) 3.43(41) 0.63(23) −1.69ð83Þ 3.99(43) −0.69ð16Þ 1.57(48)
1.6849 1.10=5 0.3046(80) 3.61(46) 0.55(25) −2.11ð89Þ 4.21(45) −0.76ð15Þ 1.83(47)
1.7256 1.75=3 0.311(11) 3.39(70) 0.64(34) −1.3ð1.1Þ 3.82(53) −0.62ð24Þ 1.34(83)
1.7752 1.56=3 0.309(11) 3.3(1.0) 0.68(48) −1.5ð1.1Þ 3.89(55) −0.65ð27Þ 1.4(1.0)
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1331 Iðw0Þ
exp ðs0Þ and I

ðw4Þ
exp ðs0Þ. The results for those parameters also

1332 determined in the earlier fits also show good consistency
1333 with the values obtained in those earlier fits, reported in
1334 Eqs. (4.1) and (4.3). In addition, the values for the OPE
1335 coefficient c6 shown in Tables Vand VI are consistent with
1336 those shown in Table IV. This constitutes an additional
1337 nontrivial consistency check.
1338 We end this subsection with a comment. For reasons
1339 already explained, we did not construct the axial equivalent
1340 of the new inclusive spectral function ρud;V obtained in
1341 Sec. III, and thus did not carry out simultaneous fits to the V
1342 and A spectral functions. This precludes us from testing
1343 consistency between vector and axial channels, and from
1344 carrying out tests based on the Weinberg sum rules, as we
1345 did in Refs. [8,11,12]. Here we point out that such tests
1346 were always successful in the separate analyses of the
1347 ALEPH and OPAL nonstrange inclusive spectral functions.
1348 We also note that our most precise results for αs were
1349 always obtained from purely V channel fits.

1350 C. Analysis

1351 To finalize our result for αsðmτÞ, an estimate is required
1352 for the error resulting from the use of the four- or five-
1353 loop-truncated perturbation theory. This is obtained
1354 following the approach outlined at the end of Sec. II C.

1355 We focus on the single-weight fit to Iðw0Þ
exp ðs0Þ with

1356 smin ¼ 1.5490 GeV2.
1357 It turns out that among the various strategies for
1358 estimating this error discussed in Sec. II C, varying c51
1359 by $50% around the central value c51 ¼ 283 yields the
1360 largest, and thus most conservative, estimate of the trun-
1361 cation error. Symmetrizing the slightly asymmetric result
1362 produces an uncertainty of $0.0026 on αsðmτÞ. Alternate
1363 error estimates based on removing order-α5s terms (i.e.,
1364 setting c5m ¼ 0), or removing both order-α4s and order-α5s
1365 terms (i.e., setting both c4m ¼ 0 and c5m ¼ 0) lead to
1366 differences equal to or smaller than the differences obtained
1367 from the 50% variation in c51 noted above.
1368 These observations apply to the perturbative represen-

1369 tation for Iðw0Þ
th ðs0Þ, and do not necessarily apply to

1370spectral moments with other weights. Since moments
1371with different weights have different perturbative
1372behaviors [43,44], we will take the difference between
1373the values of αs in Eqs. (4.1) and (4.3) to reflect an
1374independent source of perturbative error. We multiply this
1375difference by a factor two to take into account the fact that
1376one of the two weights entering the fit leading to
1377Eq. (4.3), w0, was also used in obtaining the results
1378quoted in Eqs. (4.1). This leads to an additional pertur-
1379bative uncertainty of $0.0028 on αs.
1380Combining the statistical error of Eq. (4.1) and the
1381two perturbative uncertainties discussed above in
1382quadrature, we obtain our final result for αs at the τ mass
1383scale:

αsðmτÞ ¼ 0.3077$ 0.0065stat $ 0.0038pert

¼ 0.3077$ 0.0075 ðnf ¼ 3; FOPTÞ; ð4:5Þ

13841385where the subscripts “stat" and “pert” refer to the statistical
1386and the perturbative error, respectively.
1387As we explained in Sec. II, the τ scale is sufficiently
1388low that nonperturbative effects are expected to be

1389potentially non-negligible. For Iðw0Þ
exp ðs0Þ nonperturbative

1390contributions are generated by DVs, corresponding to the
1391second term on the right-hand side of Eq. (2.11). It is
1392interesting to quantify these effects. Even though the
1393moment is dominated by perturbation theory, we find that

1394the nonperturbative part of Iðw0Þ
th ðs0Þ, which is the moment

1395most sensitive to nonperturbative effects, oscillates with
1396an amplitude typically of order 20% of the αs-dependent
1397part of the perturbative contribution (obtained by sub-
1398tracting the αs-independent parton-model piece) with
1399varying s0.
1400The nonperturbative effect is thus small but significant,
1401and this is not surprising. The nonperturbative part
1402accounts for the oscillation seen in the spectral function
1403in Fig. 8 (red curve), which cannot be accounted for by the
1404OPE (green dashed curve). We believe that it is unlikely
1405that any variation of the DV ansatz (2.12) that does an
1406equally good job of fitting the data would lead to a variation

TABLE VI. Results of block-diagonal fits to Iðw0Þ
exp ðs0Þ and Iðw4Þ

exp ðs0Þ employing the combined spectral function
with 68 clusters, with smax ¼ 3.0574 GeV2, smin in GeV2, β and γ in GeV−2, c6 in GeV6, c10 in GeV10. For each fit,
every third value of Iðw0Þ

exp ðs0Þ and Iðw3Þ
exp ðs0Þ was used, starting from s0 ¼ smin.

smin Q2=dof αsðmτÞ δ γ α β 102c6 102c10

1.5490 2.89=7 0.3069(70) 3.37(34) 0.66(21) −1.79ð62Þ 4.04(33) −0.69ð12Þ 1.56(33)
1.5863 1.80=7 0.3065(74) 3.37(34) 0.66(21) −1.87ð73Þ 4.09(38) −0.70ð13Þ 1.60(38)
1.6136 1.90=5 0.3097(83) 3.38(35) 0.64(21) −1.52ð84Þ 3.91(44) −0.64ð16Þ 1.41(48)
1.6479 1.70=5 0.3076(82) 3.43(41) 0.63(23) −1.69ð83Þ 3.99(43) −0.69ð16Þ 1.57(48)
1.6849 1.10=5 0.3046(80) 3.61(46) 0.55(25) −2.11ð89Þ 4.21(45) −0.76ð15Þ 1.83(47)
1.7256 1.75=3 0.311(11) 3.39(70) 0.64(34) −1.3ð1.1Þ 3.82(53) −0.62ð24Þ 1.34(83)
1.7752 1.56=3 0.309(11) 3.3(1.0) 0.68(48) −1.5ð1.1Þ 3.89(55) −0.65ð27Þ 1.4(1.0)
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Consistency between different fits

strong coupling from the new spectral function
w0(y) = 1

w2(y) = 1� y2

w3(y) = (1� y)2(1 + 2y)

w4(y) = (1� y2)2
<latexit sha1_base64="plZvffT0e9Qsi/lS1mn62r1skZg="></latexit>mom. ↵s c6[GeV6]

w0 0.3077(65) ��
w0&w2 0.3091(69) �0.0059(13)
w0&w3 0.3080(70) �0.0070(12)
w0&w4 0.3079(70) �0.0068(12)

<latexit sha1_base64="uqv8SyEKxPyOsyKPW9jcndulDng=">AAAC33icbZJNb9MwGMed8DbCWxlHLhYVVXpo5bRb0t4mOMBxSLSbVIfIcd3WWpxEtsNWRblw4QBCXPla3PginHG6dOo2HsnS/3n+P789dpwnXGmE/lj2nbv37j/Ye+g8evzk6bPW8/2pygpJ2YRmSSZPY6JYwlM20Vwn7DSXjIg4YSfx2dvaP/nMpOJZ+lGvcxYKskz5glOiTSlq/cUxW/K0FERLflE5JZYCikz0Kwg7EJMkX5FIwTqhkQ9nG/8dm1af/BBi7JxHCDbRgag/REHg+oddk8ASm0VXUpS9XlU1LO7A82iwZcee649rtof6CB2OXW/Y3QWHW3CE3AB14ZYMkOsNTLqDHlztP76G+qMrFLN0vr1n1GrXbh3wtvAa0QZNHEet33ie0UKwVNOEKDXzUK7DkkjNacIqBxeK5YSekSWbGZkSwVRYbt6ngq9NZQ4XmTQj1XBT3Z1REqHUWsSGrFumbnp18X/erNCLUVjyNC80S+nlRosigTqD9WPDOZeM6mRtBKGSm7NCuiKSUG2+hGOa4N288m0xHfS9YX/w4aB99KZpxx54CV4BF3ggAEfgPTgGE0AtbH2xvlnfbWJ/tX/YPy9R22rmvADXwv71D4auy9I=</latexit>
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Consistency between different fits

1331 Iðw0Þ
exp ðs0Þ and I

ðw4Þ
exp ðs0Þ. The results for those parameters also

1332 determined in the earlier fits also show good consistency
1333 with the values obtained in those earlier fits, reported in
1334 Eqs. (4.1) and (4.3). In addition, the values for the OPE
1335 coefficient c6 shown in Tables Vand VI are consistent with
1336 those shown in Table IV. This constitutes an additional
1337 nontrivial consistency check.
1338 We end this subsection with a comment. For reasons
1339 already explained, we did not construct the axial equivalent
1340 of the new inclusive spectral function ρud;V obtained in
1341 Sec. III, and thus did not carry out simultaneous fits to the V
1342 and A spectral functions. This precludes us from testing
1343 consistency between vector and axial channels, and from
1344 carrying out tests based on the Weinberg sum rules, as we
1345 did in Refs. [8,11,12]. Here we point out that such tests
1346 were always successful in the separate analyses of the
1347 ALEPH and OPAL nonstrange inclusive spectral functions.
1348 We also note that our most precise results for αs were
1349 always obtained from purely V channel fits.

1350 C. Analysis

1351 To finalize our result for αsðmτÞ, an estimate is required
1352 for the error resulting from the use of the four- or five-
1353 loop-truncated perturbation theory. This is obtained
1354 following the approach outlined at the end of Sec. II C.

1355 We focus on the single-weight fit to Iðw0Þ
exp ðs0Þ with

1356 smin ¼ 1.5490 GeV2.
1357 It turns out that among the various strategies for
1358 estimating this error discussed in Sec. II C, varying c51
1359 by $50% around the central value c51 ¼ 283 yields the
1360 largest, and thus most conservative, estimate of the trun-
1361 cation error. Symmetrizing the slightly asymmetric result
1362 produces an uncertainty of $0.0026 on αsðmτÞ. Alternate
1363 error estimates based on removing order-α5s terms (i.e.,
1364 setting c5m ¼ 0), or removing both order-α4s and order-α5s
1365 terms (i.e., setting both c4m ¼ 0 and c5m ¼ 0) lead to
1366 differences equal to or smaller than the differences obtained
1367 from the 50% variation in c51 noted above.
1368 These observations apply to the perturbative represen-

1369 tation for Iðw0Þ
th ðs0Þ, and do not necessarily apply to

1370spectral moments with other weights. Since moments
1371with different weights have different perturbative
1372behaviors [43,44], we will take the difference between
1373the values of αs in Eqs. (4.1) and (4.3) to reflect an
1374independent source of perturbative error. We multiply this
1375difference by a factor two to take into account the fact that
1376one of the two weights entering the fit leading to
1377Eq. (4.3), w0, was also used in obtaining the results
1378quoted in Eqs. (4.1). This leads to an additional pertur-
1379bative uncertainty of $0.0028 on αs.
1380Combining the statistical error of Eq. (4.1) and the
1381two perturbative uncertainties discussed above in
1382quadrature, we obtain our final result for αs at the τ mass
1383scale:

αsðmτÞ ¼ 0.3077$ 0.0065stat $ 0.0038pert

¼ 0.3077$ 0.0075 ðnf ¼ 3; FOPTÞ; ð4:5Þ

13841385where the subscripts “stat" and “pert” refer to the statistical
1386and the perturbative error, respectively.
1387As we explained in Sec. II, the τ scale is sufficiently
1388low that nonperturbative effects are expected to be

1389potentially non-negligible. For Iðw0Þ
exp ðs0Þ nonperturbative

1390contributions are generated by DVs, corresponding to the
1391second term on the right-hand side of Eq. (2.11). It is
1392interesting to quantify these effects. Even though the
1393moment is dominated by perturbation theory, we find that

1394the nonperturbative part of Iðw0Þ
th ðs0Þ, which is the moment

1395most sensitive to nonperturbative effects, oscillates with
1396an amplitude typically of order 20% of the αs-dependent
1397part of the perturbative contribution (obtained by sub-
1398tracting the αs-independent parton-model piece) with
1399varying s0.
1400The nonperturbative effect is thus small but significant,
1401and this is not surprising. The nonperturbative part
1402accounts for the oscillation seen in the spectral function
1403in Fig. 8 (red curve), which cannot be accounted for by the
1404OPE (green dashed curve). We believe that it is unlikely
1405that any variation of the DV ansatz (2.12) that does an
1406equally good job of fitting the data would lead to a variation

TABLE VI. Results of block-diagonal fits to Iðw0Þ
exp ðs0Þ and Iðw4Þ

exp ðs0Þ employing the combined spectral function
with 68 clusters, with smax ¼ 3.0574 GeV2, smin in GeV2, β and γ in GeV−2, c6 in GeV6, c10 in GeV10. For each fit,
every third value of Iðw0Þ

exp ðs0Þ and Iðw3Þ
exp ðs0Þ was used, starting from s0 ¼ smin.

smin Q2=dof αsðmτÞ δ γ α β 102c6 102c10

1.5490 2.89=7 0.3069(70) 3.37(34) 0.66(21) −1.79ð62Þ 4.04(33) −0.69ð12Þ 1.56(33)
1.5863 1.80=7 0.3065(74) 3.37(34) 0.66(21) −1.87ð73Þ 4.09(38) −0.70ð13Þ 1.60(38)
1.6136 1.90=5 0.3097(83) 3.38(35) 0.64(21) −1.52ð84Þ 3.91(44) −0.64ð16Þ 1.41(48)
1.6479 1.70=5 0.3076(82) 3.43(41) 0.63(23) −1.69ð83Þ 3.99(43) −0.69ð16Þ 1.57(48)
1.6849 1.10=5 0.3046(80) 3.61(46) 0.55(25) −2.11ð89Þ 4.21(45) −0.76ð15Þ 1.83(47)
1.7256 1.75=3 0.311(11) 3.39(70) 0.64(34) −1.3ð1.1Þ 3.82(53) −0.62ð24Þ 1.34(83)
1.7752 1.56=3 0.309(11) 3.3(1.0) 0.68(48) −1.5ð1.1Þ 3.89(55) −0.65ð27Þ 1.4(1.0)
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Final value pt. series truncation, scale variation

strong coupling from the new spectral function
w0(y) = 1

w2(y) = 1� y2

w3(y) = (1� y)2(1 + 2y)

w4(y) = (1� y2)2
<latexit sha1_base64="plZvffT0e9Qsi/lS1mn62r1skZg="></latexit>mom. ↵s c6[GeV6]

w0 0.3077(65) ��
w0&w2 0.3091(69) �0.0059(13)
w0&w3 0.3080(70) �0.0070(12)
w0&w4 0.3079(70) �0.0068(12)
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12stability of  the DV ansatz

⇢DV(s) =
⇣
1 +
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+ · · ·

⌘
e����s sin (↵+ �s)
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Results are very stable against this modification of the Ansatz
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↵s(mZ)(MS, Nf = 5)

Results evolved to mZ
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1407 in αs larger than the error we obtained in Eq. (4.5).21 It is
1408 clear that the data show the existence of nonzero DVs and,
1409 while a first-principles derivation from QCD does not exist,
1410 the main features of a DV ansatz cannot be taken to be
1411 arbitrary. As already pointed out in Sec. II, a minimal set of
1412 assumptions, based on commonly accepted properties of
1413 QCD such as, e.g., Regge behavior, leads to the para-
1414 metrization (2.12) [24].
1415 In fact, we have quantitative information on this issue,

1416 from the fits involving IðwnÞ
exp ðs0Þwith n ¼ 2, 3, 4, because of

1417 the single pinch in w2, and the double pinch in w3;4, which
1418 suppress DVs at different rates. Comparing the values of
1419 αsðmτÞ in Eqs. (4.3) and (4.4) to the value in Eq. (4.1), we
1420 see that the central value of αsðmτÞ varies by no more than
1421 0.0004, i.e., 0.13% of the central value, to be compared
1422 with the 2.3% relative error in Eq. (4.5). Such variations are
1423 much smaller than we would expect were the larger DV
1424 contributions to the w0 sum rule to have been incorrectly
1425 represented by the DV ansatz Eq. (2.12).
1426 Running the result of Eq. (4.5) to the Z-mass scale using
1427 the standard self-consistent combination of five-loop run-
1428 ning [33,34] with four-loop matching [78,79] at the charm
1429 and bottom thresholds (2mcðmcÞ and 2mbðmbÞ, respec-
1430 tively, with MS masses from the PDG [55]) we obtain the
1431 corresponding nf ¼ 5 result

αsðmZÞ ¼ 0.1171$ 0.0010 ðnf ¼ 5; FOPTÞ: ð4:6Þ

14321433 With five-loop running and four-loop matching the uncer-
1434 tainty due to the running is very small. If we perform the
1435 matching at mcðmcÞ and mbðmbÞ we find a shift of just
1436 0.00009, which does not contribute to the final uncertainty.
1437 To conclude this section, we compare our new value of
1438 αsðmτÞ given in Eq. (4.5) with those obtained from analyses
1439 of the ALEPH data [8], the OPAL data [12], and from
1440 eþe− → hadrons below 2 GeV [80], where the latter was
1441 based on the combined electroproduction spectral data of
1442 Ref. [13]. These previously obtained values are

αsðmτÞ ¼ 0.325$ 0.018 ðOPALdataÞ;
αsðmτÞ ¼ 0.296$ 0.010 ðALEPHdataÞ;
αsðmτÞ ¼ 0.298$ 0.017 ðeþe− dataÞ: ð4:7Þ

14431444 Previously, we quoted a weighted average of the two
1445 τ-based values in Eq. (4.7), of the ALEPH-based and
1446 OPAL-based results, αsðmτÞ ¼ 0.303$ 0.009, as our best
1447 determination from τ decays. This value and the values

1448shown in Eq. (4.7) are in good agreement with our new,
1449more precise value in Eq. (4.5).
1450A direct comparison with other recent determinations of
1451αs from τ decays [4,9] is problematic because they are all
1452based on the truncated OPE strategy, which was shown in
1453Refs. [25,26] to be contaminated by uncontrolled system-
1454atic effects arising mainly from the neglect of unknown
1455higher-order terms in the OPE in Refs. [4–6,9]. The values
1456of Refs. [4,9] are also highly correlated, since they are
1457based on the same general strategy and the same ALEPH
1458dataset. We note that the values of Refs. [4,9] are signifi-
1459cantly larger than ours αsðmZÞ ¼ 0.1199$ 0.0015, from
1460Ref. [4] and αsðmZÞ ¼ 0.1197$ 0.0015, from Ref. [9].

1461V. CONCLUSION

1462The determination of the strong coupling from hadronic
1463τ decays has the potential to provide one of the most precise
1464values among the many determinations from different
1465methods that have appeared in the literature. It thus makes
1466sense to aim for a determination from the combined
1467experimental information available, and this is what we
1468set out to do in this paper. This led us to construct a new
1469nonstrange vector, isovector spectral function, which is
1470presented in Table I and Fig. 5.
1471In order to construct this spectral function, we combined
1472the τ → π−π 0ντ, τ → 2π−πþπ 0ντ and τ → π−3π 0ντ exper-
1473imental data available from the ALEPH and OPAL col-
1474laborations, using the method employed before in Ref. [13].
1475The sum of these contributions constitutes 98% of the
1476spectral function as measured by branching fraction.
1477Details of the contributions from the remaining exclusive
1478channels, a number of which were estimated using Monte-
1479Carlo, were not provided by ALEPH or OPAL. We have
1480replaced the estimates for these residual-mode contribu-
1481tions using recent τ results for theK−K0 mode and the large
1482amount of data now available, via CVC, from electro-
1483production experiments for the remaining residual modes,
1484with conservative estimates of the systematic errors asso-
1485ciated with this approach. As measured by the spectral
1486moments shown in Table II, this leads to a more accurate
1487determination of the spectral function ρud;VðsÞ, especially
1488in the upper part of the τ kinematic range. This is a
1489consequence of the fact that electroproduction data are
1490not kinematically limited near the τ mass. We emphasize
1491that the inclusive spectral function which results is a sum of
1492s-dependent exclusive-mode contributions, all of which are
1493now obtained from experiment and none of which require
1494Monte-Carlo input any more.
1495One of the most important applications of this new
1496combined dataset is a determination of the strong coupling
1497αs at the τ mass scale. We employed previously developed
1498methods using finite-energy sum rules to extract a new
1499estimate of the MS value of αsðmτÞ from these data, which,
1500when evolved to the Z mass scale, produces a five-flavor

21Contrary to claims in the literature, use of the truncated-OPE
strategy (which ignores DVs, as well as certain higher dimension
OPE contributions) in sum-rule fits to moments of the sum of the
V and A spectral functions can lead to systematic effects of order
10% in αsðmτÞ [25].
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Final result

1331 Iðw0Þ
exp ðs0Þ and I

ðw4Þ
exp ðs0Þ. The results for those parameters also

1332 determined in the earlier fits also show good consistency
1333 with the values obtained in those earlier fits, reported in
1334 Eqs. (4.1) and (4.3). In addition, the values for the OPE
1335 coefficient c6 shown in Tables Vand VI are consistent with
1336 those shown in Table IV. This constitutes an additional
1337 nontrivial consistency check.
1338 We end this subsection with a comment. For reasons
1339 already explained, we did not construct the axial equivalent
1340 of the new inclusive spectral function ρud;V obtained in
1341 Sec. III, and thus did not carry out simultaneous fits to the V
1342 and A spectral functions. This precludes us from testing
1343 consistency between vector and axial channels, and from
1344 carrying out tests based on the Weinberg sum rules, as we
1345 did in Refs. [8,11,12]. Here we point out that such tests
1346 were always successful in the separate analyses of the
1347 ALEPH and OPAL nonstrange inclusive spectral functions.
1348 We also note that our most precise results for αs were
1349 always obtained from purely V channel fits.

1350 C. Analysis

1351 To finalize our result for αsðmτÞ, an estimate is required
1352 for the error resulting from the use of the four- or five-
1353 loop-truncated perturbation theory. This is obtained
1354 following the approach outlined at the end of Sec. II C.

1355 We focus on the single-weight fit to Iðw0Þ
exp ðs0Þ with

1356 smin ¼ 1.5490 GeV2.
1357 It turns out that among the various strategies for
1358 estimating this error discussed in Sec. II C, varying c51
1359 by $50% around the central value c51 ¼ 283 yields the
1360 largest, and thus most conservative, estimate of the trun-
1361 cation error. Symmetrizing the slightly asymmetric result
1362 produces an uncertainty of $0.0026 on αsðmτÞ. Alternate
1363 error estimates based on removing order-α5s terms (i.e.,
1364 setting c5m ¼ 0), or removing both order-α4s and order-α5s
1365 terms (i.e., setting both c4m ¼ 0 and c5m ¼ 0) lead to
1366 differences equal to or smaller than the differences obtained
1367 from the 50% variation in c51 noted above.
1368 These observations apply to the perturbative represen-

1369 tation for Iðw0Þ
th ðs0Þ, and do not necessarily apply to

1370spectral moments with other weights. Since moments
1371with different weights have different perturbative
1372behaviors [43,44], we will take the difference between
1373the values of αs in Eqs. (4.1) and (4.3) to reflect an
1374independent source of perturbative error. We multiply this
1375difference by a factor two to take into account the fact that
1376one of the two weights entering the fit leading to
1377Eq. (4.3), w0, was also used in obtaining the results
1378quoted in Eqs. (4.1). This leads to an additional pertur-
1379bative uncertainty of $0.0028 on αs.
1380Combining the statistical error of Eq. (4.1) and the
1381two perturbative uncertainties discussed above in
1382quadrature, we obtain our final result for αs at the τ mass
1383scale:

αsðmτÞ ¼ 0.3077$ 0.0065stat $ 0.0038pert

¼ 0.3077$ 0.0075 ðnf ¼ 3; FOPTÞ; ð4:5Þ

13841385where the subscripts “stat" and “pert” refer to the statistical
1386and the perturbative error, respectively.
1387As we explained in Sec. II, the τ scale is sufficiently
1388low that nonperturbative effects are expected to be

1389potentially non-negligible. For Iðw0Þ
exp ðs0Þ nonperturbative

1390contributions are generated by DVs, corresponding to the
1391second term on the right-hand side of Eq. (2.11). It is
1392interesting to quantify these effects. Even though the
1393moment is dominated by perturbation theory, we find that

1394the nonperturbative part of Iðw0Þ
th ðs0Þ, which is the moment

1395most sensitive to nonperturbative effects, oscillates with
1396an amplitude typically of order 20% of the αs-dependent
1397part of the perturbative contribution (obtained by sub-
1398tracting the αs-independent parton-model piece) with
1399varying s0.
1400The nonperturbative effect is thus small but significant,
1401and this is not surprising. The nonperturbative part
1402accounts for the oscillation seen in the spectral function
1403in Fig. 8 (red curve), which cannot be accounted for by the
1404OPE (green dashed curve). We believe that it is unlikely
1405that any variation of the DV ansatz (2.12) that does an
1406equally good job of fitting the data would lead to a variation

TABLE VI. Results of block-diagonal fits to Iðw0Þ
exp ðs0Þ and Iðw4Þ

exp ðs0Þ employing the combined spectral function
with 68 clusters, with smax ¼ 3.0574 GeV2, smin in GeV2, β and γ in GeV−2, c6 in GeV6, c10 in GeV10. For each fit,
every third value of Iðw0Þ

exp ðs0Þ and Iðw3Þ
exp ðs0Þ was used, starting from s0 ¼ smin.

smin Q2=dof αsðmτÞ δ γ α β 102c6 102c10

1.5490 2.89=7 0.3069(70) 3.37(34) 0.66(21) −1.79ð62Þ 4.04(33) −0.69ð12Þ 1.56(33)
1.5863 1.80=7 0.3065(74) 3.37(34) 0.66(21) −1.87ð73Þ 4.09(38) −0.70ð13Þ 1.60(38)
1.6136 1.90=5 0.3097(83) 3.38(35) 0.64(21) −1.52ð84Þ 3.91(44) −0.64ð16Þ 1.41(48)
1.6479 1.70=5 0.3076(82) 3.43(41) 0.63(23) −1.69ð83Þ 3.99(43) −0.69ð16Þ 1.57(48)
1.6849 1.10=5 0.3046(80) 3.61(46) 0.55(25) −2.11ð89Þ 4.21(45) −0.76ð15Þ 1.83(47)
1.7256 1.75=3 0.311(11) 3.39(70) 0.64(34) −1.3ð1.1Þ 3.82(53) −0.62ð24Þ 1.34(83)
1.7752 1.56=3 0.309(11) 3.3(1.0) 0.68(48) −1.5ð1.1Þ 3.89(55) −0.65ð27Þ 1.4(1.0)
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conclusions

1407 in αs larger than the error we obtained in Eq. (4.5).21 It is
1408 clear that the data show the existence of nonzero DVs and,
1409 while a first-principles derivation from QCD does not exist,
1410 the main features of a DV ansatz cannot be taken to be
1411 arbitrary. As already pointed out in Sec. II, a minimal set of
1412 assumptions, based on commonly accepted properties of
1413 QCD such as, e.g., Regge behavior, leads to the para-
1414 metrization (2.12) [24].
1415 In fact, we have quantitative information on this issue,

1416 from the fits involving IðwnÞ
exp ðs0Þwith n ¼ 2, 3, 4, because of

1417 the single pinch in w2, and the double pinch in w3;4, which
1418 suppress DVs at different rates. Comparing the values of
1419 αsðmτÞ in Eqs. (4.3) and (4.4) to the value in Eq. (4.1), we
1420 see that the central value of αsðmτÞ varies by no more than
1421 0.0004, i.e., 0.13% of the central value, to be compared
1422 with the 2.3% relative error in Eq. (4.5). Such variations are
1423 much smaller than we would expect were the larger DV
1424 contributions to the w0 sum rule to have been incorrectly
1425 represented by the DV ansatz Eq. (2.12).
1426 Running the result of Eq. (4.5) to the Z-mass scale using
1427 the standard self-consistent combination of five-loop run-
1428 ning [33,34] with four-loop matching [78,79] at the charm
1429 and bottom thresholds (2mcðmcÞ and 2mbðmbÞ, respec-
1430 tively, with MS masses from the PDG [55]) we obtain the
1431 corresponding nf ¼ 5 result

αsðmZÞ ¼ 0.1171$ 0.0010 ðnf ¼ 5; FOPTÞ: ð4:6Þ

14321433 With five-loop running and four-loop matching the uncer-
1434 tainty due to the running is very small. If we perform the
1435 matching at mcðmcÞ and mbðmbÞ we find a shift of just
1436 0.00009, which does not contribute to the final uncertainty.
1437 To conclude this section, we compare our new value of
1438 αsðmτÞ given in Eq. (4.5) with those obtained from analyses
1439 of the ALEPH data [8], the OPAL data [12], and from
1440 eþe− → hadrons below 2 GeV [80], where the latter was
1441 based on the combined electroproduction spectral data of
1442 Ref. [13]. These previously obtained values are

αsðmτÞ ¼ 0.325$ 0.018 ðOPALdataÞ;
αsðmτÞ ¼ 0.296$ 0.010 ðALEPHdataÞ;
αsðmτÞ ¼ 0.298$ 0.017 ðeþe− dataÞ: ð4:7Þ

14431444 Previously, we quoted a weighted average of the two
1445 τ-based values in Eq. (4.7), of the ALEPH-based and
1446 OPAL-based results, αsðmτÞ ¼ 0.303$ 0.009, as our best
1447 determination from τ decays. This value and the values

1448shown in Eq. (4.7) are in good agreement with our new,
1449more precise value in Eq. (4.5).
1450A direct comparison with other recent determinations of
1451αs from τ decays [4,9] is problematic because they are all
1452based on the truncated OPE strategy, which was shown in
1453Refs. [25,26] to be contaminated by uncontrolled system-
1454atic effects arising mainly from the neglect of unknown
1455higher-order terms in the OPE in Refs. [4–6,9]. The values
1456of Refs. [4,9] are also highly correlated, since they are
1457based on the same general strategy and the same ALEPH
1458dataset. We note that the values of Refs. [4,9] are signifi-
1459cantly larger than ours αsðmZÞ ¼ 0.1199$ 0.0015, from
1460Ref. [4] and αsðmZÞ ¼ 0.1197$ 0.0015, from Ref. [9].

1461V. CONCLUSION

1462The determination of the strong coupling from hadronic
1463τ decays has the potential to provide one of the most precise
1464values among the many determinations from different
1465methods that have appeared in the literature. It thus makes
1466sense to aim for a determination from the combined
1467experimental information available, and this is what we
1468set out to do in this paper. This led us to construct a new
1469nonstrange vector, isovector spectral function, which is
1470presented in Table I and Fig. 5.
1471In order to construct this spectral function, we combined
1472the τ → π−π 0ντ, τ → 2π−πþπ 0ντ and τ → π−3π 0ντ exper-
1473imental data available from the ALEPH and OPAL col-
1474laborations, using the method employed before in Ref. [13].
1475The sum of these contributions constitutes 98% of the
1476spectral function as measured by branching fraction.
1477Details of the contributions from the remaining exclusive
1478channels, a number of which were estimated using Monte-
1479Carlo, were not provided by ALEPH or OPAL. We have
1480replaced the estimates for these residual-mode contribu-
1481tions using recent τ results for theK−K0 mode and the large
1482amount of data now available, via CVC, from electro-
1483production experiments for the remaining residual modes,
1484with conservative estimates of the systematic errors asso-
1485ciated with this approach. As measured by the spectral
1486moments shown in Table II, this leads to a more accurate
1487determination of the spectral function ρud;VðsÞ, especially
1488in the upper part of the τ kinematic range. This is a
1489consequence of the fact that electroproduction data are
1490not kinematically limited near the τ mass. We emphasize
1491that the inclusive spectral function which results is a sum of
1492s-dependent exclusive-mode contributions, all of which are
1493now obtained from experiment and none of which require
1494Monte-Carlo input any more.
1495One of the most important applications of this new
1496combined dataset is a determination of the strong coupling
1497αs at the τ mass scale. We employed previously developed
1498methods using finite-energy sum rules to extract a new
1499estimate of the MS value of αsðmτÞ from these data, which,
1500when evolved to the Z mass scale, produces a five-flavor

21Contrary to claims in the literature, use of the truncated-OPE
strategy (which ignores DVs, as well as certain higher dimension
OPE contributions) in sum-rule fits to moments of the sum of the
V and A spectral functions can lead to systematic effects of order
10% in αsðmτÞ [25].
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reconciling FOPT and CIPT: renormalon free (RF) scheme for the Gluon cond.

General structure of the gluon condensate (GC) pole is known in QCD at NLO

Analogous relations also hold for any other scheme to define the strong coupling including
the C-scheme. Its one-loop Wilson coefficient correction is known and with the results of
Ref. [45] its contribution to the Euclidean Adler function’s OPE series reads

�D
OPE

4,0 (�Q
2) =

1

Q4

2⇡2

3

h
1 + c̄

(1)

4,0 āQ

i
hḠ

2
i , (2.33)

with

c̄
(1)

4,0 =
4

�0

✓
CA

2
�

CF

4
�

�1

4�0

◆
, (2.34)

where CA = 3, CF = 4/3. For nf = 3 we have c̄
(1)

4,0 = �22/81. The term in the Euclidean
Adler function’s Borel function (with respect to the expansion in powers of ↵̄s(Q2)) that
corresponds to the GC OPE correction has the form

B4,0(u) =
h
1 + c̄

(1)

4,0 āQ

i
N4,0

(2� u)1+4b̂1
. (2.35)

For the purpose of this work we adopt the exact form of Eqs. (2.33) and (2.35) in the
C-scheme, i.e. in the Wilson coefficient we truncate all terms at O(↵2

s) and beyond. When
switching to the MS-scheme, however, we keep all resulting higher-order terms that are
generated by the term c̄

(1)

4,0 āQ.
In this work we refer to the non-analytic structure of B4,0(u), its associated asymptotic

power series of Eq. (2.29) and the corresponding OPE correction �D
OPE
4,0 (�Q

2) collectively
as the ‘GC renormalon’. Our notation also applies when a general complex-valued momen-
tum transfer s is considered instead of Q2. A very important phenomenological aspect of
the GC renormalon is that for spectral function moments with polynomial weight functions
W (x) that do not contain a quadratic term x

2 (corresponding to the absence of a linear
term x in w(x)), the GC renormalon is strongly suppressed. For the GC OPE correction
�
(4)

W (s0) this suppression can be easily seen from the form of the GC corrections to the Adler
function for complex-valued momentum transfer s.

�D
OPE

4,0 (s) =
1

s2

2⇡2

3

h
1 + c̄

(1)

4,0 ā(�s)
i
hḠ

2
i . (2.36)

Accounting only for the tree-level Wilson coefficient, i.e. neglecting the one-loop correction
proportional to c̄

(1)

4,0, due to the residue theorem
¸

ds
s

sm

s2 = 0 for an integer m 6= 2, the
GC OPE correction �

(4)

W (s0) vanishes identically for a weight function W (x) that does not
contain a quadratic term x

2. So for spectral function moments of this kind the GC OPE
correction can contribute only through the s-dependence of the O(↵s) correction of the
Wilson coefficient. Since this dependence on s is only logarithmic, the net effect of the GC
OPE correction is tiny and negligibly small for practical applications. The total hadronic tau
decay rate, which is obtained from the kinematic weight function W⌧ (x) = 1�2x+2x3�x

4,
belongs to this kind of spectral function moments. In our work we call moments based on
weight functions without a quadratic term GC suppressed (GCS) spectral function moments.
In contrast, for spectral function moments with polynomial weight functions W (x) that
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Euclidean Adler function D(�Q
2) the order-dependent compensating contribution of the

GC related to the series terms in Eq. (2.29) for d = 4, � = 0 and ↵ = 0 is made explicit
and that the GC correction in the new scheme still has the form shown in Eq. (2.33). We
can then write down the relation between the original order-dependent GC hḠ

2
i
(n) in the

MS scheme and our new renormalon-free and order-independent GC hG
2
i(R):
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where Ng is the universal GC renormalon norm which is related to the GC renormalon
norm of the Adler function as defined in Eq. (2.35) by the relation

Ng =
3

2⇡2
N4,0 (3.2)

The coefficients r(4,0)` are obtained from Eq. (2.30). We remind the reader that the series on
the RHS is a power series in the C-scheme strong coupling ↵̄s(R2). The explicit expression
for r

(4,0)
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The GC in this renormalon-free scheme is by construction scale-dependent and we refer
to this (quadratic) scale generically as R

2 since it does need to be equal to Q
2. From a

conceptual point of view R plays the role of an IR factorization scale which may be naturally
chosen to be smaller than the relevant dynamical scale of the observable of interest, which
is Q for D(�Q

2). We discuss the role of R in more detail in Sec. 3.2. Since here we are
considering the Euclidean Adler function, it is reasonable to consider R2 as well as hG2

i(R2)

as real-valued, but this is not strictly mandatory. The purpose of this renormalon-free GC
is to reshuffle the series on the RHS of Eq. (3.1) back into the perturbative series for the
Euclidean Adler function D̂(�Q

2) so that it can explicitly eliminate the effects of the GC
renormalon from the original series in the MS OPE scheme of Eq. (2.23). The resulting
subtraction series depends on the norm N4,0 =

2⇡2

3
Ng and is generated by the inverse Borel

transform
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where the series in āR must still be consistently expanded in āQ and truncated at the same
order as the original unsubtracted series, so that the GC renormalon cancels properly.

To see that this subtraction indeed works, let us consider the sum of the GC renormalon
contribution of the original series and the subtraction in Eq. (3.4),
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It is straightforward to show that the ambiguity due to the cuts cancels in the difference of
the two terms and that the net series (consistently expanded in āQ) is convergent.9 Since

9The factor R4/Q4 multiplying the second term in the brackets on the RHS of Eq. (3.5) is essential for
the cancellation of the ambiguity.
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Infrared-subtracted scheme for the GC condensate (“short distance scheme”)

Euclidean Adler function D(�Q
2) the order-dependent compensating contribution of the

GC related to the series terms in Eq. (2.29) for d = 4, � = 0 and ↵ = 0 is made explicit
and that the GC correction in the new scheme still has the form shown in Eq. (2.33). We
can then write down the relation between the original order-dependent GC hḠ

2
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(n) in the

MS scheme and our new renormalon-free and order-independent GC hG
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`
R , (3.1)

where Ng is the universal GC renormalon norm which is related to the GC renormalon
norm of the Adler function as defined in Eq. (2.35) by the relation

Ng =
3
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N4,0 (3.2)

The coefficients r(4,0)` are obtained from Eq. (2.30). We remind the reader that the series on
the RHS is a power series in the C-scheme strong coupling ↵̄s(R2). The explicit expression
for r
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The GC in this renormalon-free scheme is by construction scale-dependent and we refer
to this (quadratic) scale generically as R

2 since it does need to be equal to Q
2. From a

conceptual point of view R plays the role of an IR factorization scale which may be naturally
chosen to be smaller than the relevant dynamical scale of the observable of interest, which
is Q for D(�Q

2). We discuss the role of R in more detail in Sec. 3.2. Since here we are
considering the Euclidean Adler function, it is reasonable to consider R2 as well as hG2

i(R2)

as real-valued, but this is not strictly mandatory. The purpose of this renormalon-free GC
is to reshuffle the series on the RHS of Eq. (3.1) back into the perturbative series for the
Euclidean Adler function D̂(�Q

2) so that it can explicitly eliminate the effects of the GC
renormalon from the original series in the MS OPE scheme of Eq. (2.23). The resulting
subtraction series depends on the norm N4,0 =

2⇡2

3
Ng and is generated by the inverse Borel
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where the series in āR must still be consistently expanded in āQ and truncated at the same
order as the original unsubtracted series, so that the GC renormalon cancels properly.

To see that this subtraction indeed works, let us consider the sum of the GC renormalon
contribution of the original series and the subtraction in Eq. (3.4),
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It is straightforward to show that the ambiguity due to the cuts cancels in the difference of
the two terms and that the net series (consistently expanded in āQ) is convergent.9 Since

9The factor R4/Q4 multiplying the second term in the brackets on the RHS of Eq. (3.5) is essential for
the cancellation of the ambiguity.
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reconciling FOPT and CIPT: renormalon free (RF) scheme for the Gluon cond.

General structure of the gluon condensate (GC) pole is known in QCD at NLO

Analogous relations also hold for any other scheme to define the strong coupling including
the C-scheme. Its one-loop Wilson coefficient correction is known and with the results of
Ref. [45] its contribution to the Euclidean Adler function’s OPE series reads

�D
OPE

4,0 (�Q
2) =
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2⇡2
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4,0 āQ
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hḠ

2
i , (2.33)

with

c̄
(1)

4,0 =
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4
�

�1

4�0

◆
, (2.34)

where CA = 3, CF = 4/3. For nf = 3 we have c̄
(1)

4,0 = �22/81. The term in the Euclidean
Adler function’s Borel function (with respect to the expansion in powers of ↵̄s(Q2)) that
corresponds to the GC OPE correction has the form

B4,0(u) =
h
1 + c̄

(1)

4,0 āQ

i
N4,0

(2� u)1+4b̂1
. (2.35)

For the purpose of this work we adopt the exact form of Eqs. (2.33) and (2.35) in the
C-scheme, i.e. in the Wilson coefficient we truncate all terms at O(↵2

s) and beyond. When
switching to the MS-scheme, however, we keep all resulting higher-order terms that are
generated by the term c̄

(1)

4,0 āQ.
In this work we refer to the non-analytic structure of B4,0(u), its associated asymptotic

power series of Eq. (2.29) and the corresponding OPE correction �D
OPE
4,0 (�Q

2) collectively
as the ‘GC renormalon’. Our notation also applies when a general complex-valued momen-
tum transfer s is considered instead of Q2. A very important phenomenological aspect of
the GC renormalon is that for spectral function moments with polynomial weight functions
W (x) that do not contain a quadratic term x

2 (corresponding to the absence of a linear
term x in w(x)), the GC renormalon is strongly suppressed. For the GC OPE correction
�
(4)

W (s0) this suppression can be easily seen from the form of the GC corrections to the Adler
function for complex-valued momentum transfer s.
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2⇡2
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(1)

4,0 ā(�s)
i
hḠ

2
i . (2.36)

Accounting only for the tree-level Wilson coefficient, i.e. neglecting the one-loop correction
proportional to c̄

(1)

4,0, due to the residue theorem
¸

ds
s

sm

s2 = 0 for an integer m 6= 2, the
GC OPE correction �

(4)

W (s0) vanishes identically for a weight function W (x) that does not
contain a quadratic term x

2. So for spectral function moments of this kind the GC OPE
correction can contribute only through the s-dependence of the O(↵s) correction of the
Wilson coefficient. Since this dependence on s is only logarithmic, the net effect of the GC
OPE correction is tiny and negligibly small for practical applications. The total hadronic tau
decay rate, which is obtained from the kinematic weight function W⌧ (x) = 1�2x+2x3�x

4,
belongs to this kind of spectral function moments. In our work we call moments based on
weight functions without a quadratic term GC suppressed (GCS) spectral function moments.
In contrast, for spectral function moments with polynomial weight functions W (x) that
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Euclidean Adler function D(�Q
2) the order-dependent compensating contribution of the

GC related to the series terms in Eq. (2.29) for d = 4, � = 0 and ↵ = 0 is made explicit
and that the GC correction in the new scheme still has the form shown in Eq. (2.33). We
can then write down the relation between the original order-dependent GC hḠ

2
i
(n) in the

MS scheme and our new renormalon-free and order-independent GC hG
2
i(R):

hḠ
2
i
(n)

⌘ hG
2
i(R2) � R

4

nX

`=1

Ng r
(4,0)
` ā

`
R , (3.1)

where Ng is the universal GC renormalon norm which is related to the GC renormalon
norm of the Adler function as defined in Eq. (2.35) by the relation

Ng =
3

2⇡2
N4,0 (3.2)

The coefficients r(4,0)` are obtained from Eq. (2.30). We remind the reader that the series on
the RHS is a power series in the C-scheme strong coupling ↵̄s(R2). The explicit expression
for r

(4,0)
` reads

r
(4,0)
` =

⇣1
2

⌘`+4b̂1 �(`+ 4b̂1)

�(1 + 4b̂1)
. (3.3)

The GC in this renormalon-free scheme is by construction scale-dependent and we refer
to this (quadratic) scale generically as R

2 since it does need to be equal to Q
2. From a

conceptual point of view R plays the role of an IR factorization scale which may be naturally
chosen to be smaller than the relevant dynamical scale of the observable of interest, which
is Q for D(�Q

2). We discuss the role of R in more detail in Sec. 3.2. Since here we are
considering the Euclidean Adler function, it is reasonable to consider R2 as well as hG2

i(R2)

as real-valued, but this is not strictly mandatory. The purpose of this renormalon-free GC
is to reshuffle the series on the RHS of Eq. (3.1) back into the perturbative series for the
Euclidean Adler function D̂(�Q

2) so that it can explicitly eliminate the effects of the GC
renormalon from the original series in the MS OPE scheme of Eq. (2.23). The resulting
subtraction series depends on the norm N4,0 =

2⇡2

3
Ng and is generated by the inverse Borel

transform
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where the series in āR must still be consistently expanded in āQ and truncated at the same
order as the original unsubtracted series, so that the GC renormalon cancels properly.

To see that this subtraction indeed works, let us consider the sum of the GC renormalon
contribution of the original series and the subtraction in Eq. (3.4),
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āQ

(2� u)1+4b̂1
�

R
4

Q4

e
� u

āR
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It is straightforward to show that the ambiguity due to the cuts cancels in the difference of
the two terms and that the net series (consistently expanded in āQ) is convergent.9 Since

9The factor R4/Q4 multiplying the second term in the brackets on the RHS of Eq. (3.5) is essential for
the cancellation of the ambiguity.
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Infrared-subtracted scheme for the GC condensate (“short distance scheme”)

Euclidean Adler function D(�Q
2) the order-dependent compensating contribution of the

GC related to the series terms in Eq. (2.29) for d = 4, � = 0 and ↵ = 0 is made explicit
and that the GC correction in the new scheme still has the form shown in Eq. (2.33). We
can then write down the relation between the original order-dependent GC hḠ

2
i
(n) in the

MS scheme and our new renormalon-free and order-independent GC hG
2
i(R):
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where Ng is the universal GC renormalon norm which is related to the GC renormalon
norm of the Adler function as defined in Eq. (2.35) by the relation

Ng =
3

2⇡2
N4,0 (3.2)

The coefficients r(4,0)` are obtained from Eq. (2.30). We remind the reader that the series on
the RHS is a power series in the C-scheme strong coupling ↵̄s(R2). The explicit expression
for r

(4,0)
` reads

r
(4,0)
` =

⇣1
2

⌘`+4b̂1 �(`+ 4b̂1)

�(1 + 4b̂1)
. (3.3)

The GC in this renormalon-free scheme is by construction scale-dependent and we refer
to this (quadratic) scale generically as R

2 since it does need to be equal to Q
2. From a

conceptual point of view R plays the role of an IR factorization scale which may be naturally
chosen to be smaller than the relevant dynamical scale of the observable of interest, which
is Q for D(�Q

2). We discuss the role of R in more detail in Sec. 3.2. Since here we are
considering the Euclidean Adler function, it is reasonable to consider R2 as well as hG2

i(R2)

as real-valued, but this is not strictly mandatory. The purpose of this renormalon-free GC
is to reshuffle the series on the RHS of Eq. (3.1) back into the perturbative series for the
Euclidean Adler function D̂(�Q

2) so that it can explicitly eliminate the effects of the GC
renormalon from the original series in the MS OPE scheme of Eq. (2.23). The resulting
subtraction series depends on the norm N4,0 =

2⇡2

3
Ng and is generated by the inverse Borel

transform

�D̂4,0(�Q
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Taylor
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where the series in āR must still be consistently expanded in āQ and truncated at the same
order as the original unsubtracted series, so that the GC renormalon cancels properly.

To see that this subtraction indeed works, let us consider the sum of the GC renormalon
contribution of the original series and the subtraction in Eq. (3.4),
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āR

(2� u)1+4b̂1

�
.(3.5)

It is straightforward to show that the ambiguity due to the cuts cancels in the difference of
the two terms and that the net series (consistently expanded in āQ) is convergent.9 Since

9The factor R4/Q4 multiplying the second term in the brackets on the RHS of Eq. (3.5) is essential for
the cancellation of the ambiguity.
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General structure of the gluon condensate (GC) pole is known in QCD at NLO

Analogous relations also hold for any other scheme to define the strong coupling including
the C-scheme. Its one-loop Wilson coefficient correction is known and with the results of
Ref. [45] its contribution to the Euclidean Adler function’s OPE series reads
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where CA = 3, CF = 4/3. For nf = 3 we have c̄
(1)

4,0 = �22/81. The term in the Euclidean
Adler function’s Borel function (with respect to the expansion in powers of ↵̄s(Q2)) that
corresponds to the GC OPE correction has the form

B4,0(u) =
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1 + c̄
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4,0 āQ
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(2� u)1+4b̂1
. (2.35)

For the purpose of this work we adopt the exact form of Eqs. (2.33) and (2.35) in the
C-scheme, i.e. in the Wilson coefficient we truncate all terms at O(↵2

s) and beyond. When
switching to the MS-scheme, however, we keep all resulting higher-order terms that are
generated by the term c̄

(1)

4,0 āQ.
In this work we refer to the non-analytic structure of B4,0(u), its associated asymptotic

power series of Eq. (2.29) and the corresponding OPE correction �D
OPE
4,0 (�Q

2) collectively
as the ‘GC renormalon’. Our notation also applies when a general complex-valued momen-
tum transfer s is considered instead of Q2. A very important phenomenological aspect of
the GC renormalon is that for spectral function moments with polynomial weight functions
W (x) that do not contain a quadratic term x

2 (corresponding to the absence of a linear
term x in w(x)), the GC renormalon is strongly suppressed. For the GC OPE correction
�
(4)

W (s0) this suppression can be easily seen from the form of the GC corrections to the Adler
function for complex-valued momentum transfer s.
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Accounting only for the tree-level Wilson coefficient, i.e. neglecting the one-loop correction
proportional to c̄

(1)

4,0, due to the residue theorem
¸

ds
s

sm

s2 = 0 for an integer m 6= 2, the
GC OPE correction �

(4)

W (s0) vanishes identically for a weight function W (x) that does not
contain a quadratic term x

2. So for spectral function moments of this kind the GC OPE
correction can contribute only through the s-dependence of the O(↵s) correction of the
Wilson coefficient. Since this dependence on s is only logarithmic, the net effect of the GC
OPE correction is tiny and negligibly small for practical applications. The total hadronic tau
decay rate, which is obtained from the kinematic weight function W⌧ (x) = 1�2x+2x3�x

4,
belongs to this kind of spectral function moments. In our work we call moments based on
weight functions without a quadratic term GC suppressed (GCS) spectral function moments.
In contrast, for spectral function moments with polynomial weight functions W (x) that
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Euclidean Adler function D(�Q
2) the order-dependent compensating contribution of the

GC related to the series terms in Eq. (2.29) for d = 4, � = 0 and ↵ = 0 is made explicit
and that the GC correction in the new scheme still has the form shown in Eq. (2.33). We
can then write down the relation between the original order-dependent GC hḠ

2
i
(n) in the

MS scheme and our new renormalon-free and order-independent GC hG
2
i(R):

hḠ
2
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⌘ hG
2
i(R2) � R
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(4,0)
` ā
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R , (3.1)

where Ng is the universal GC renormalon norm which is related to the GC renormalon
norm of the Adler function as defined in Eq. (2.35) by the relation

Ng =
3

2⇡2
N4,0 (3.2)

The coefficients r(4,0)` are obtained from Eq. (2.30). We remind the reader that the series on
the RHS is a power series in the C-scheme strong coupling ↵̄s(R2). The explicit expression
for r

(4,0)
` reads

r
(4,0)
` =

⇣1
2

⌘`+4b̂1 �(`+ 4b̂1)

�(1 + 4b̂1)
. (3.3)

The GC in this renormalon-free scheme is by construction scale-dependent and we refer
to this (quadratic) scale generically as R

2 since it does need to be equal to Q
2. From a

conceptual point of view R plays the role of an IR factorization scale which may be naturally
chosen to be smaller than the relevant dynamical scale of the observable of interest, which
is Q for D(�Q

2). We discuss the role of R in more detail in Sec. 3.2. Since here we are
considering the Euclidean Adler function, it is reasonable to consider R2 as well as hG2

i(R2)

as real-valued, but this is not strictly mandatory. The purpose of this renormalon-free GC
is to reshuffle the series on the RHS of Eq. (3.1) back into the perturbative series for the
Euclidean Adler function D̂(�Q

2) so that it can explicitly eliminate the effects of the GC
renormalon from the original series in the MS OPE scheme of Eq. (2.23). The resulting
subtraction series depends on the norm N4,0 =

2⇡2

3
Ng and is generated by the inverse Borel

transform
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āR , (3.4)

where the series in āR must still be consistently expanded in āQ and truncated at the same
order as the original unsubtracted series, so that the GC renormalon cancels properly.

To see that this subtraction indeed works, let us consider the sum of the GC renormalon
contribution of the original series and the subtraction in Eq. (3.4),
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It is straightforward to show that the ambiguity due to the cuts cancels in the difference of
the two terms and that the net series (consistently expanded in āQ) is convergent.9 Since

9The factor R4/Q4 multiplying the second term in the brackets on the RHS of Eq. (3.5) is essential for
the cancellation of the ambiguity.
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GC matrix element. What we need is a closed function that obeys the same R-evolution
equation. Interestingly, such a function can be obtained from the Borel sum of the subtrac-
tion series in Eq. (3.1) defined by

c̄0(R
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āR
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,

where for completeness we have also displayed the result for complex R
2. Note that the

expression for the general complex-valued strong coupling reduces to the expressions of
the real-valued one in the limit Im[āR] ! 0. The R

2-derivative of c̄0(R2) gives exactly
the expression on the RHS of Eq. (3.8) divided by Ng for any complex R

2 for which the
strong coupling ↵s(R2) is analytic. With this definition it is in principle possible to even
consider complex values for R

2. However, in the following we only discuss real-valued R
2.

As a consequence, the subtraction series in Eq. (3.1) is intrinsically real-valued as well and
should in principle be strongly suppressed for the GCS spectral function moment, in the
same way as the GC OPE correction. This is an essential aspect in the analysis carried out
in Sec. 3.3.

The Borel sum in Eq. (3.9) is a priori not unique due to the cut along the positive
real axis, and we have adopted the common principal value prescription (PV), which is
the average of deforming the contour above and below the real u-axis. The prescription is,
however, not in any way essential since the choice of the function c̄0(R2) is simply defining
the scheme of our scale-invariant and renormalon-free GC. In fact, any other choice for
c̄0(R2) (related to adding a constant on the RHS of Eq. (3.9)) would be equally feasible,
as long as it satisfies the same R-evolution equation. We define our final scale-invariant
renormalon-free GC matrix element hG

2
i
RF by the relation

hG
2
i(R2) ⌘ hG

2
i
RF +Ng c̄0(R

2) . (3.10)

Our particular choice for the function c̄0(R2) has the nice feature that it implements the
renormalon-free Borel sum scheme as we show explicitly in Sec. 3.2. This means that hG2

i
RF

is closely related to the scheme definitions implemented in Refs. [17, 18, 32–35].
We stress again that neither the exact form of the subtraction series in Eq. (3.1) nor

the function c̄0(R2) are in principle unique. The subtraction series merely needs to have the
same asymptotic large order behavior as the one shown in Eq. (2.29) but may have additional
convergent contributions.10 The function c̄0(R2) has mainly been introduced for practical
convenience. We have adopted a choice for c̄0(R2) such that it agrees with the Borel sum
of the subtraction series as defined in Eq. (3.9) for any value of Ng. As a consequence

10Here we use the naming ‘convergent series’ to signify that the series has a finite radius of convergence.
We use naming ’a series converges to a value’ to signify that the series converges to the value when the
expansion parameter is smaller than the radius of convergence.
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Euclidean Adler function D(�Q
2) the order-dependent compensating contribution of the

GC related to the series terms in Eq. (2.29) for d = 4, � = 0 and ↵ = 0 is made explicit
and that the GC correction in the new scheme still has the form shown in Eq. (2.33). We
can then write down the relation between the original order-dependent GC hḠ
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MS scheme and our new renormalon-free and order-independent GC hG
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where Ng is the universal GC renormalon norm which is related to the GC renormalon
norm of the Adler function as defined in Eq. (2.35) by the relation

Ng =
3

2⇡2
N4,0 (3.2)

The coefficients r(4,0)` are obtained from Eq. (2.30). We remind the reader that the series on
the RHS is a power series in the C-scheme strong coupling ↵̄s(R2). The explicit expression
for r
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The GC in this renormalon-free scheme is by construction scale-dependent and we refer
to this (quadratic) scale generically as R

2 since it does need to be equal to Q
2. From a

conceptual point of view R plays the role of an IR factorization scale which may be naturally
chosen to be smaller than the relevant dynamical scale of the observable of interest, which
is Q for D(�Q

2). We discuss the role of R in more detail in Sec. 3.2. Since here we are
considering the Euclidean Adler function, it is reasonable to consider R2 as well as hG2

i(R2)

as real-valued, but this is not strictly mandatory. The purpose of this renormalon-free GC
is to reshuffle the series on the RHS of Eq. (3.1) back into the perturbative series for the
Euclidean Adler function D̂(�Q

2) so that it can explicitly eliminate the effects of the GC
renormalon from the original series in the MS OPE scheme of Eq. (2.23). The resulting
subtraction series depends on the norm N4,0 =

2⇡2
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Ng and is generated by the inverse Borel

transform
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where the series in āR must still be consistently expanded in āQ and truncated at the same
order as the original unsubtracted series, so that the GC renormalon cancels properly.

To see that this subtraction indeed works, let us consider the sum of the GC renormalon
contribution of the original series and the subtraction in Eq. (3.4),

�D̂4,0(�Q
2
, R

2) =
h
1 + c̄

(1)

4,0 āQ
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It is straightforward to show that the ambiguity due to the cuts cancels in the difference of
the two terms and that the net series (consistently expanded in āQ) is convergent.9 Since

9The factor R4/Q4 multiplying the second term in the brackets on the RHS of Eq. (3.5) is essential for
the cancellation of the ambiguity.
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GC matrix element. What we need is a closed function that obeys the same R-evolution
equation. Interestingly, such a function can be obtained from the Borel sum of the subtrac-
tion series in Eq. (3.1) defined by
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where for completeness we have also displayed the result for complex R
2. Note that the

expression for the general complex-valued strong coupling reduces to the expressions of
the real-valued one in the limit Im[āR] ! 0. The R

2-derivative of c̄0(R2) gives exactly
the expression on the RHS of Eq. (3.8) divided by Ng for any complex R

2 for which the
strong coupling ↵s(R2) is analytic. With this definition it is in principle possible to even
consider complex values for R

2. However, in the following we only discuss real-valued R
2.

As a consequence, the subtraction series in Eq. (3.1) is intrinsically real-valued as well and
should in principle be strongly suppressed for the GCS spectral function moment, in the
same way as the GC OPE correction. This is an essential aspect in the analysis carried out
in Sec. 3.3.

The Borel sum in Eq. (3.9) is a priori not unique due to the cut along the positive
real axis, and we have adopted the common principal value prescription (PV), which is
the average of deforming the contour above and below the real u-axis. The prescription is,
however, not in any way essential since the choice of the function c̄0(R2) is simply defining
the scheme of our scale-invariant and renormalon-free GC. In fact, any other choice for
c̄0(R2) (related to adding a constant on the RHS of Eq. (3.9)) would be equally feasible,
as long as it satisfies the same R-evolution equation. We define our final scale-invariant
renormalon-free GC matrix element hG

2
i
RF by the relation

hG
2
i(R2) ⌘ hG

2
i
RF +Ng c̄0(R

2) . (3.10)

Our particular choice for the function c̄0(R2) has the nice feature that it implements the
renormalon-free Borel sum scheme as we show explicitly in Sec. 3.2. This means that hG2

i
RF

is closely related to the scheme definitions implemented in Refs. [17, 18, 32–35].
We stress again that neither the exact form of the subtraction series in Eq. (3.1) nor

the function c̄0(R2) are in principle unique. The subtraction series merely needs to have the
same asymptotic large order behavior as the one shown in Eq. (2.29) but may have additional
convergent contributions.10 The function c̄0(R2) has mainly been introduced for practical
convenience. We have adopted a choice for c̄0(R2) such that it agrees with the Borel sum
of the subtraction series as defined in Eq. (3.9) for any value of Ng. As a consequence

10Here we use the naming ‘convergent series’ to signify that the series has a finite radius of convergence.
We use naming ’a series converges to a value’ to signify that the series converges to the value when the
expansion parameter is smaller than the radius of convergence.
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scale invariant

Its more convenient to work with scale invariant GC

Borel sum unchanged, for any value of 
the norm. Minimal scheme.

"tree level” (unexpanded) 
contribution

āQ ⌘ �1

2⇡
↵s(Q)
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Infrared-subtracted scheme for the GC condensate (“short distance scheme”)

Euclidean Adler function D(�Q
2) the order-dependent compensating contribution of the

GC related to the series terms in Eq. (2.29) for d = 4, � = 0 and ↵ = 0 is made explicit
and that the GC correction in the new scheme still has the form shown in Eq. (2.33). We
can then write down the relation between the original order-dependent GC hḠ

2
i
(n) in the

MS scheme and our new renormalon-free and order-independent GC hG
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i(R):

hḠ
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where Ng is the universal GC renormalon norm which is related to the GC renormalon
norm of the Adler function as defined in Eq. (2.35) by the relation

Ng =
3

2⇡2
N4,0 (3.2)

The coefficients r(4,0)` are obtained from Eq. (2.30). We remind the reader that the series on
the RHS is a power series in the C-scheme strong coupling ↵̄s(R2). The explicit expression
for r
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` reads
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The GC in this renormalon-free scheme is by construction scale-dependent and we refer
to this (quadratic) scale generically as R

2 since it does need to be equal to Q
2. From a

conceptual point of view R plays the role of an IR factorization scale which may be naturally
chosen to be smaller than the relevant dynamical scale of the observable of interest, which
is Q for D(�Q

2). We discuss the role of R in more detail in Sec. 3.2. Since here we are
considering the Euclidean Adler function, it is reasonable to consider R2 as well as hG2

i(R2)

as real-valued, but this is not strictly mandatory. The purpose of this renormalon-free GC
is to reshuffle the series on the RHS of Eq. (3.1) back into the perturbative series for the
Euclidean Adler function D̂(�Q

2) so that it can explicitly eliminate the effects of the GC
renormalon from the original series in the MS OPE scheme of Eq. (2.23). The resulting
subtraction series depends on the norm N4,0 =
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Ng and is generated by the inverse Borel
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āR , (3.4)

where the series in āR must still be consistently expanded in āQ and truncated at the same
order as the original unsubtracted series, so that the GC renormalon cancels properly.

To see that this subtraction indeed works, let us consider the sum of the GC renormalon
contribution of the original series and the subtraction in Eq. (3.4),
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It is straightforward to show that the ambiguity due to the cuts cancels in the difference of
the two terms and that the net series (consistently expanded in āQ) is convergent.9 Since

9The factor R4/Q4 multiplying the second term in the brackets on the RHS of Eq. (3.5) is essential for
the cancellation of the ambiguity.
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reconciling FOPT and CIPT

average
CIPT
FOPT

0.3

0.31

0.32

0.33

0.34

0.35

The renormalon-free scheme for the gluon condensate is able to reconcile FO and CIPT results

We can now consistently average the two results to obtain

↵s(m⌧ ) = 0.3120± 0.0082
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Combination of 2⇡ +4⇡ channels
Good �2 both locally and globally, no �2 inflation needed
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new vector isovector spectral function

Local p-value
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DB, Golterman, Maltman, Peris, Rodrigues and Schaaf, arXiv:2012.10440 

Dramatic improvement in errors for higher multiplicity modes (near end point)

No Monte Carlo input 

new vector isovector spectral function

7 residual channels extracted from            data + BaBar data fore+e�
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Total

Residual

new vector-isovector spectral function

Combined               (ALEPH and OPAL) + residual channels from data  
new vector isovector spectral function

2⇡ + 4⇡
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99.95% of the Branching Fraction covered



We do not show figures equivalent to Figs. 6, 7 and 8, as
they would look very similar. As is the case in all τ-based αs
determinations, the CIPT value is about 5 percent larger
than the FOPT value. The statistical error on the FOPT and
CIPT values are about 2.1 and 2.6 percent, respectively. We
note that the DV-parameter values are not significantly
different between the FOPT and CIPT fits.
In Table IV, we present the results for the block-diagonal

simultaneous fits to Iðw0Þ
exp ðs0Þ and Iðw2Þ

exp ðs0Þ, restricting our
attention to the seven values of smin used in obtaining

the results in Eqs. (4.1) above. Taking a straight average
of the seven values between smin ¼ 1.5490 GeV2 and
1.7752 GeV2, and taking the smallest parameter error on
this interval as the error on this average, we find the
parameter values (statistical errors only)19
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FIG. 8. The spectral moment Iðw0Þ
exp ðs0Þ from the fit with smin ¼ 1.5490 GeV2 in Table III (left panel), and the resulting spectral function

(right panel), multiplied by 2π2. The black symbols denote data points, the red solid curve the fit, and the green dashed curve the OPE
part of the fit.

FIG. 7. DV parameters of Table III as a function of smin. The blue areas correspond to the averages reported in Eq. (4.1); these
averages are computed from the data points indicated in purple (see text). β and γ are in GeV−2. The thin vertical dashed line
separates the regions in which the p values shown in Table III are smaller than 16% (to the left), from the region where they are
larger than 45% (to the right).

19As we have seen in the case of Iðw0Þ
exp ðs0Þ, this simplified

averaging procedure produces a very good approximation to the
fully correlated average we computed in that case.
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