# Precision measurements of jet and photon production at the ATLAS experiment Jennifer Roloff, on behalf of the ATLAS collaboration July 7, 2022





## **Precision QCD at the LHC** LHC dataset enables precise tests of QCD

- - Tests of perturbative QCD predictions, especially at high scales
  - Extracting the strong coupling constant and its running
  - Studying non-perturbative parton showers and hadronization
- Huge dataset and precise object reconstruction enable increased precision and more granular measurements
- Focusing on 3 measurements today
  - Measurement of isolated diphoton cross-section

  - Extraction of  $\alpha_s$  using transverse energy-energy correlations (TEECs) Measurement of b-quark fragmentation in jets

## **Measurement of diphoton production**





(a) Direct photons

(b) Single- and double-fragmentation photons

- Diphoton final state, but very sensitive to QCD
  - Direct and fragmentation photon processes are sensitive to different effects
- Important background for Higgs production
- Measuring the inclusive and differential diphoton crosssection
- Using isolation and photon ID to estimate the background contributions
  - Most background is from jets misidentified as photons









## Measurement of diphoton production 2107.09330

- Comparing inclusive cross-section measurement to several theoretical predictions
- Important to have high fixed-order accuracy, as well as contributions from  $\gamma\gamma$ +(2j, 3j)

|         | Fixed-order accuracy |                     |             |             |            | Fragmentation                 |        | QCD    | NP   |              |
|---------|----------------------|---------------------|-------------|-------------|------------|-------------------------------|--------|--------|------|--------------|
|         | γγ                   | <b>+</b> 1 <i>j</i> | +2 <i>j</i> | +3 <i>j</i> | $+ \ge 4j$ | $gg \rightarrow \gamma\gamma$ | single | double | res. | effects      |
| Diphox  | NLO                  | LO                  | _           | _           | _          | LO                            | NLO    |        | _    | _            |
| Nnlojet | NNLO                 | NLO                 | LO          | -           | -          | LO                            | _      | _      | _    | _            |
| Sherpa  | NLO                  |                     | LO          |             | PS         | LO                            | ME+PS  |        | PS   | $\checkmark$ |



## Measurement of diphoton production

- $m_{\gamma\gamma} < p_{T1} + p_{T2}$  is suppressed
  - Only populated because of  $\gamma\gamma$ +multijet
  - Low-mass distribution is dependent on photon kinematic cuts
- DIPHOX doesn't model these well, but NNLOJET and Sherpa both include higher order contributions
- Slight underestimation from NNLOJET at high  $m_{\gamma\gamma}$

### 2107.09330





## **Measurement of diphoton production**

- Very small azimuthal decorrelation means very collinear  $\rightarrow$  large impact from soft emissions
  - Difficult to model well, large disagreements with fixed-order predictions
- Sherpa includes resummation of these effects, and is able to model this fairly well
- Some underestimation from NNLOJET in the intermediate region
- DIPHOX does not model this well anywhere

### 2107.09330



6



## Transverse energy-energy correlations

 $\frac{1}{\sigma}\frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \equiv \frac{1}{\sigma}\sum_{ij}\int\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{T}i}\mathrm{d}x_{\mathrm{T}j}\mathrm{d}\cos\phi}x_{\mathrm{T}i}x_{\mathrm{T}j}\mathrm{d}x_{\mathrm{T}i}\mathrm{d}x_{\mathrm{T}j} = \frac{1}{N}\sum_{A=1}^{N}\sum_{ij}\frac{E_{\mathrm{T}i}^{A}E_{\mathrm{T}j}^{A}}{\left(\sum_{k}E_{\mathrm{T}k}^{A}\right)^{2}}\delta(\cos\phi - \cos\phi_{ij}).$ 

- E<sub>T</sub>-weighted distribution of the Δφ between jet pairs
- cosφ = -1: back-to-back jets, very dijet-like
- cosφ = 1: collinear jets, sensitive to splittings and soft effects
- Kink in the cosphi distribution around double the jet radius (0.92)

| - | Generator | ME order | ME partons | PDF set      | Parton shower             |
|---|-----------|----------|------------|--------------|---------------------------|
| - | Рутніа 8  | LO       | 2          | NNPDF 2.3 LO | $p_{\rm T}$ -ordered      |
| - | Sherpa    | LO       | 2,3        | CT14 NNLO    | CSS (dipole)              |
| - | Herwig 7  | NLO      | 2,3        | MMHT2014 NLO | Angular-ordered<br>Dipole |





## **Transverse energy-energy correlations**

- Used NLO predictions to extract  $\alpha_s$  and its running
  - Able to probe  $\alpha_s$  to high Q (up to 4 TeV)
- Scale uncertainties are dominant
  - Systematic uncertainties (JES and modeling) are next-most important



 $\alpha_{\rm s}(m_Z) = 0.1196 \pm 0.0001 \text{ (stat.)} \pm 0.0004 \text{ (syst.)}^{+0.0071}_{-0.0104} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$ 

### **ATLAS-CONF-2020-025**



ATLAS Preliminary Particle-level TEEC  $\sqrt{s} = 13 \text{ TeV}; 139 \text{ fb}^{-1}$ 

NLO pQCD MMHT 2014 (NNLO) — Exp. unc. Non-scale unc. Theo. unc.

> hl < 2.4 p\_ > 60 GeV anti- $k_{+}R = 0.4$

## **Exclusive B fragmentation** Measuring b-fragmentation within jets using

- $B \rightarrow J/\psi K^{+/-}$
- B-fragmentation important for Higgs measurements, top mass measurements, and more
- Measuring longitudinal and transverse profiles of Bmesons over the jet momentum

$$z = \frac{\vec{p}_B \cdot \vec{p}_j}{|\vec{p}_j|^2}; \quad p_{\mathrm{T}}^{\mathrm{rel}} = \frac{|\vec{p}_B \times \vec{p}_j|}{|\vec{p}_j|},$$

- B-meson yield is extracted for each bin of the measurement using a template fit
- Sensitive to fragmentation functions and  $g \rightarrow bb$ splitting

composition [%]

Sample





- Z-distribution from hard scattering and gluon splitting are very distinct
- Herwig7 angle-ordered shower very similar to both Sherpa predictions
- Both Sherpa predictions are similar, except at very high z
  - Little impact from hadronization

0.7

0.6⊦

0.5⊢

0.4

0.3⊢

**0.2**<sup>⊨</sup>

**0.1**⊢

0

40

- Herwig7 dipole significantly overestimates  $g \rightarrow bb$
- Pythia Monash has a higher  $\alpha_{\rm S}$  than Pythia A14, so more  $g \rightarrow bb$  splitting







# Summary

- LHC provides a rich playground for studying QCD
  - Able to study to high scales not tested by other experiments
  - Large dataset enables precise measurements
- Advances in theoretical predictions enable studying a wide range of effects
  - Measurement of diphotons provides strong tests of higher-order QCD corrections
  - Measurement of TEECs enables extraction of the running of aS at NLO for scales up to 4 TeV
  - Measurement of b-fragmentation improves understanding of heavy quark fragmentation





- ► NNLOJET:
  - NNLO predictions
  - $gg \rightarrow \gamma \gamma$  at LO
  - Uses the NNPDF3.0 NNLO PDF set
  - Factorization and normalization scales of myy
  - Hybrid photon isolation to remove photon-quark configurations
  - Fragmentation component not included since these are not available at NNLO
- DIPHOX
  - NLO predictions using CT10 NLO PDFs
  - Factorization, normalization, and fragmentation scales of myy
  - Includes fragmentation component
- ► SHERPA
  - Includes direct and fragmentation components
  - $gg \rightarrow \gamma \gamma$  at LO
  - ►  $pp \rightarrow \gamma \gamma + (0,1)$  jet at NLO,  $pp \rightarrow \gamma \gamma + (2,3)$  jet at LO
  - Use NNPDF3.0@NNLO





## Measurement of diphoton production

- NNLOJET and DIPHOX are fixed-order (FO) predictions
  - Don't expect good agreement where multiple collinear or soft emissions are relevant
  - FO uncertainties do not cover differences with data
  - DIPHOX has different normalization, but roughly describes the shape
- Fixed order scale variations do not provide an accurate estimate of the true uncertainties
  - Typical feature of the diphoton process, where significant contributions and their uncertainties only appear at higher orders

### 2107.09330



## Background estimation is typically one of the dominant uncertainties Statistical uncertainties become important for large pT, myy



| Selection             | Detector level                                                                | Particle level                                                                |
|-----------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Photon kinematics     | $p_{\mathrm{T},\gamma_{1(2)}} > 40 (30) \mathrm{GeV}$                         | 7, $ \eta_{\gamma}  < 2.37$ excluding $1.37 <  \eta_{\gamma}  < 1.37$         |
| Photon identification | tight                                                                         | stable, not from hadron decay                                                 |
| Photon isolation      | $E_{\mathrm{T},\gamma}^{\mathrm{iso},0.2} < 0.05 \cdot p_{\mathrm{T},\gamma}$ | $E_{\mathrm{T},\gamma}^{\mathrm{iso},0.2} < 0.09 \cdot p_{\mathrm{T},\gamma}$ |
| Diphoton topology     |                                                                               | $N_{\gamma} \ge 2,  \Delta R_{\gamma\gamma} > 0.4$                            |



## TEECs

## Dominated by JES and modeling uncertainties



### https://cds.cern.ch/record/2725553/







Generat

Pythia

Sherpa

Herwig

| or | ME order               | Scales $\mu_{\rm r}$ , $\mu_{\rm f}$  | Parton shower           | PDF set  | Tune          | Hadronisa                 |
|----|------------------------|---------------------------------------|-------------------------|----------|---------------|---------------------------|
| 8  | 2 → 2 @ LO             | $(m_{\rm T3} \cdot m_{\rm T4})^{1/2}$ | p <sub>T</sub> -ordered | CTEQ6L1  | А14<br>А14-rb | Lund–Boy<br>Lund–Boy      |
|    |                        |                                       |                         | NNPDF2.3 | Monash        | Lund–Boy<br>Peterso       |
| A  | $2 \rightarrow 2 @ LO$ | H(s,t,u)                              | CSS (dipole)            | CT14     | _             | Cluster me<br>Lund string |
| 7  | $2 \rightarrow 2 @ LO$ | $\sqrt{\frac{2stu}{s^2+t^2+u^2}}$     | Angle-ordered<br>Dipole | MMHT2014 | _             | Cluster me                |









- Higher jet pt means more g  $\rightarrow$  bb splitting
- Herwig7 angle-ordered shower very similar to both Sherpa predictions
- Both Sherpa predictions are similar, except at very high z
  - Little impact from hadronization
- Herwig7 dipole significantly overestimates the  $g \rightarrow bb$ splitting contribution
- Pythia Monash has a higher aS than Pythia A14, so more  $g \rightarrow bb$  splitting



### 2108.11650



