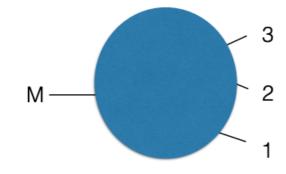
Amplitude analyses on charm decays at the LHCb experiment

Fernanda Abrantes on behalf of the LHCb collaboration @ ICHEP meeting

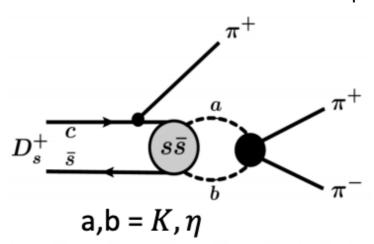


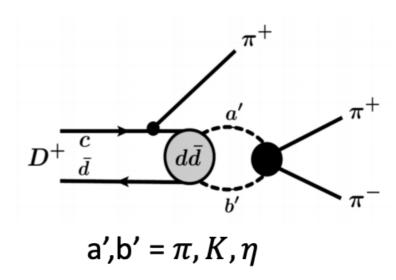
Dalitz plot analysis in 3 body decays

- Dalitz Plot has been a fundamental tool to study the dynamics of decay processes
- Provides important information of hadronic processes, such as:
 - Revealing and understanding resonances in different final states
 - Study the dynamics of the scalar sector (not well understood)
 - Search and study of CP violation in the beauty and charm sector
 - Study lineshapes and interference patterns

$$d\Gamma = \left| \mathcal{M}_{fi} \right|^2 d\Phi$$

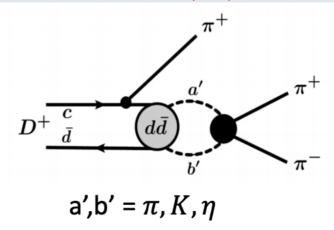
$$= \left| \mathcal{M}_{fi} \right|^2 \left| \frac{\partial \Phi}{\partial \left(s_{12}, s_{13} \right)} \right| ds_{12} ds_{13}$$

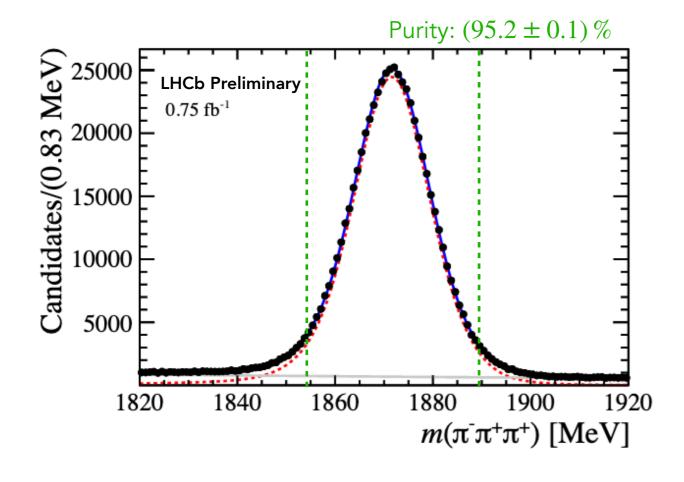

$$= \frac{1}{(2\pi)^2 32M^3} \left| \mathcal{M}_{fi} \right|^2 ds_{12} ds_{13} \qquad s_{ij} \equiv \left(p_i + p_j \right)^2 \equiv m_{ij}^2$$

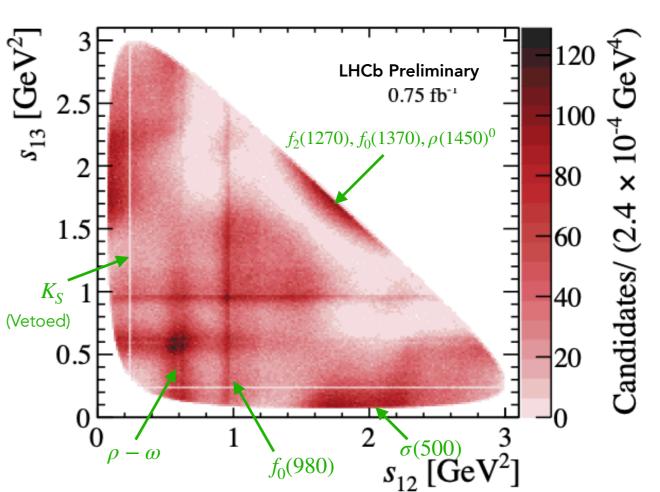

Focus on the latest LHCb charm meson amplitude analyses:

Amplitude analysis of the $D^+ \to \pi^-\pi^+\pi^+$ and $D_s^+ \to \pi^-\pi^+\pi^+$ decays and measurement of the $\pi^-\pi^+$ S-wave amplitude

$D^+ o \pi^- \pi^+ \pi^+$ and $D_s^+ o \pi^- \pi^+ \pi^+$ decays


- Previous analyses:
 - ◆ D+: E791 (2001)^[1], FOCUS (2004)^[2] and CLEO (2007)^[3]
 - ◆ CLEO's ~2.6k events with 55% purity
 - ◆ D_s+: E791 (2001)^[4], BaBar (2009)^[5], BESIII (2021)^[6]
 - ◆ BESIII sample ~13k events with 80% purity
- S-wave measured to be the major contribution in the 3π final state
 - Challenge: understand the $\pi^-\pi^+$ scalar sector with many overlapping resonances;
 - $f_0(980)$ accounts as ~50% of the total decay rate for D_s^+ and $f_0(500)$ with ~50% for D_s^+
 - Comparison between D_s^+ and D^+ S-wave amplitudes
- LHCb data has larger samples allowing for unprecedented opportunity to study these channels and enlighten our knowledge of their dynamics
- Quasi-Model Independent approach (QMIPWA) for S-wave, and Isobar Model for P and D-waves
- Both analysis based on 2012 data sample (Run I)




$D^+ \to \pi^- \pi^+ \pi^+$ decays

- No new results since CLEO (15 years ago)!!
- First time performing a QMIPWA analysis!!
- High statistics, thus, sensitive to more details

- Selection: trigger+ offline pre selection + MVA selection (reduce combinatorial background)
- Final sample: ~600k events and ~95% purity (minimise effects of background misparametrisation)
- Use only events within the 2σ window for all Dalitz fits

Quasi Model-Independent Partial Wave Analysis - QMIPWA

- The $m(\pi^-\pi^+)$ mass spectrum is divided into sub-intervals (knots)
- ullet In each knot edge, the amplitude is determined by two real constants, a_k and ϕ_k

$$A^k_{S-wave} = a^k e^{i\phi^k} \qquad k, l \to \text{knots in } m \left(\pi^- \pi^+ \right)$$

$$A^{k,l}_{S-wave} \left(s_{12}, s_{13} \right) = A^k_{S-wave} \left(m_{12} \right) + A^l_{S-wave} \left(m_{13} \right)$$

A linear spline interpolation is used to get the S-wave amplitude at any point in $m^2(\pi^-\pi^+)$

- P- and D-waves assumed to be well parametrised and included via Isobar Model.
- GooFit: framework for maximum likelihood fits using GPU

Total amplitude

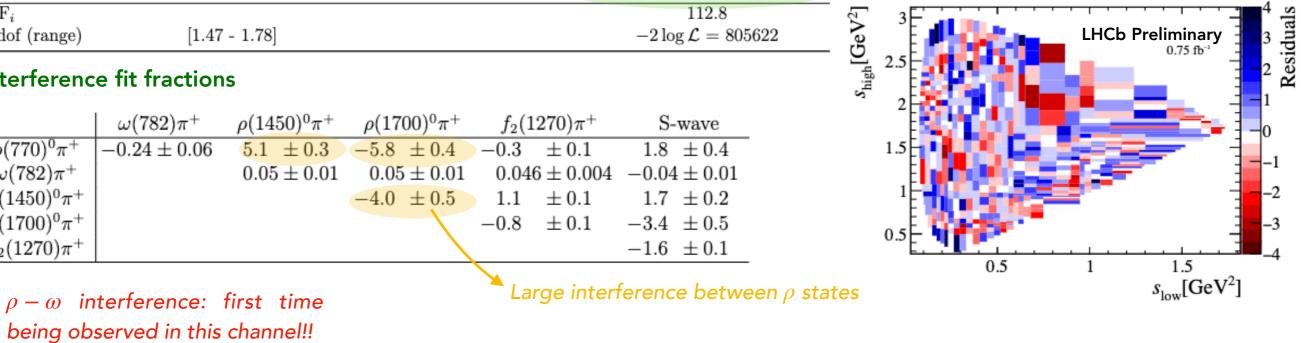
Free parameters:

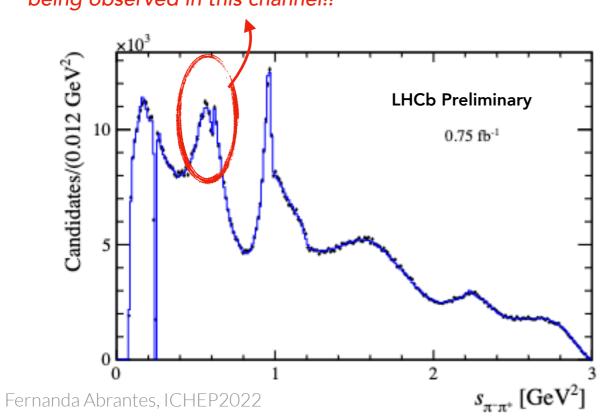
- Spin 1 and 2 contributions: magnitude a_i and phase δ_i
- S-Wave: a^k and ϕ^k

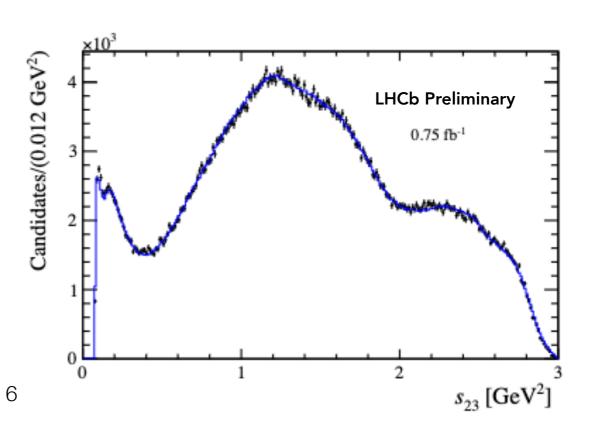
Other information:

- Fit quality via χ^2 test
- Comparison between models: $FCN = -2 \log \mathcal{L}$

LHCb Preliminary 0.75 fb⁻¹


S-wave is dominant!


Fit result: $D^+ \rightarrow \pi^- \pi^+ \pi^+$


Component	Magnitude	Phase [°]		Fit fra	action [%	6]
$\rho(770)^{0}\pi^{+}$	1 [fixed]	0 [fixed]	26.0	± 0.3	± 1.6	± 0.3
$\omega(782)\pi^{+}$	$(1.68 \pm 0.06 \pm 0.15 \pm 0.02) \times 10^{-2}$	$-103.3 \pm 2.1 \pm 2.6 \pm 0.4$	0.103	3 ± 0.00	8 ± 0.014	4 ± 0.002
$\rho(1450)^0\pi^+$	$2.66 \pm 0.07 \pm 0.24 \pm 0.22$	$47.0 \pm 1.5 \pm 5.5 \pm 4.1$	5.4	± 0.4	± 1.3	± 0.8
$\rho(1700)^0\pi^+$	$7.41 \pm 0.18 \pm 0.47 \pm 0.71$	$-65.7 \pm 1.5 \pm 3.8 \pm 4.6$	5.7	± 0.5	± 1.0	± 1.0
$f_2(1270)\pi^+$	$2.16 \pm 0.02 \pm 0.10 \pm 0.02$	$-100.9 \pm 0.7 \pm 2.0 \pm 0.4$	13.8	± 0.2	± 0.4	± 0.2
S-wave			61.8	± 0.5	± 0.6	± 0.5
$\sum_{i} FF_{i}$				1	12.8	
$\chi^2/\text{ndof (range)}$	[1.47 - 1.78]			$-2\log L$	$\mathcal{C} = 8056$	622

Interference fit fractions

	$ω(782)π^{+}$	$\rho(1450)^0\pi^+$	$\rho(1700)^{0}\pi^{+}$	$f_2(1270)\pi^+$	S-wave
$\rho(770)^{0}\pi^{+}$	-0.24 ± 0.06	5.1 ± 0.3	-5.8 ± 0.4	-0.3 ± 0.1	1.8 ± 0.4
$\omega(782)\pi^{+}$		0.05 ± 0.01	0.05 ± 0.01	0.046 ± 0.004	-0.04 ± 0.01
$\rho(1450)^0\pi^+$			-4.0 ± 0.5	1.1 ± 0.1	1.7 ± 0.2
$\rho(1700)^0\pi^+$				-0.8 ± 0.1	-3.4 ± 0.5
$f_2(1270)\pi^+$					-1.6 ± 0.1


$D^+ \to \pi^- \pi^+ \pi^+$: Extracted $\pi^- \pi^+$ S-Wave amplitude

Statistical uncertainties

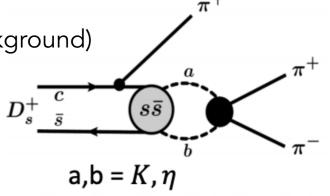
LHCb-PAPER-2022-016 in preparation

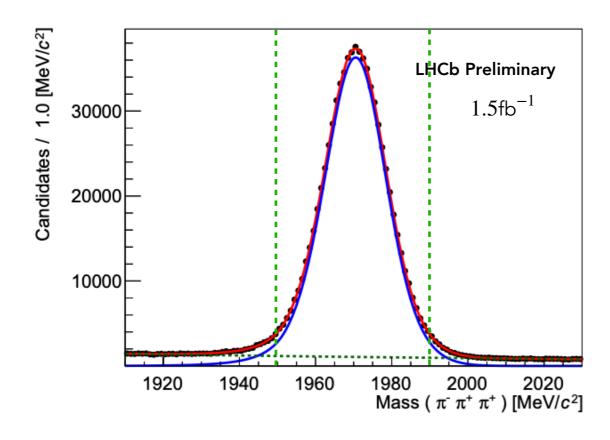
Stat + exp. syst + model syst uncertainties

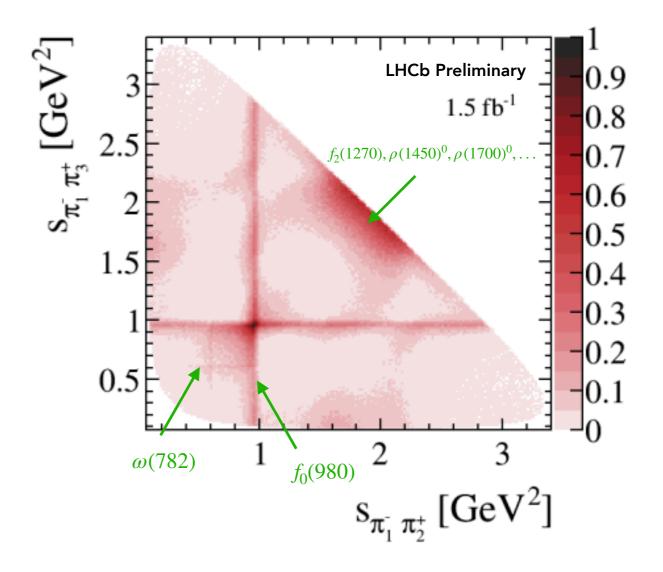
Signature of $f_0(980)$: Peak in the magnitude and large phase variation near 1.0 GeV

Magnitude of the S-wave is larger close to the threshold indicating a dominant contribution from the $f_0(500)$

Rapid growth of phase and amplitude towards the end of the spectrum indicates the presence of at least one more scalar resonance, for instance $f_0(1500)$ (also enhanced by the opening of $\eta\eta'$ channel)


Summary $D^+ \to \pi^- \pi^+ \pi^+$


Principal contributions:


- First QMIPWA analysis for this decay channel!!
- Detailed measurement of the $\pi^-\pi^+S$ -wave amplitude
- $\rho \omega$: first time observed in $D^+ \to \pi^- \pi^+ \pi^+$
 - $\omega(782) \to \pi^- \pi^+$: $(0.103 \pm 0.008 \pm 0.014 \pm 0.002) \%$
 - $\omega(782) \to \pi^-\pi^+$ isospin-violating decay
- $\rho-\omega$ mixing lineshape also tested but no significant difference
 - $|B| = 0.522 \pm 0.019 \pm 0.047 \pm 0.006$ and $\phi_B = (158.8 \pm 2.1 \pm 2.6 \pm 0.4)^o$
- S-wave found to be dominant ~62% (in agreement with previous observations)
- Best fit result includes the $\rho(1700)^0$ state
 - very significant change in the FCN! (-488 units compared to that of the model without it)
 - Only $ho^0(1450)$ is not enough to describe P wave in the high mass end

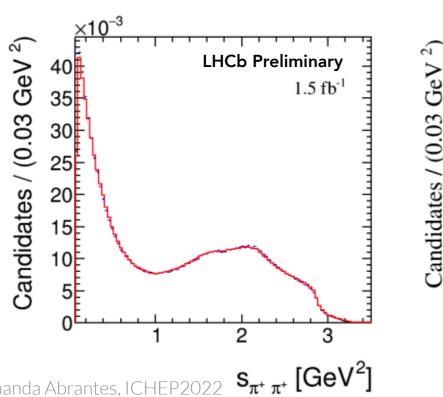
$D_s^+ \to \pi^- \pi^+ \pi^+$ decays

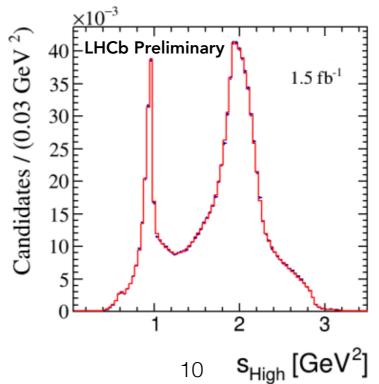
- Latest results from BESIII with a QMIPWA analysis (~1.3k events)
- Follows the same methodology as the $D^+ \to \pi^- \pi^+ \pi^+$ analysis
- Selection: trigger + offline pre selection + MVA selection (reduce combinatorial background)
- Final sample with over 700k events and ~95% purity
 - (minimise effects of background misparametrisation)

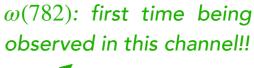
Fit result: $D_s^+ \to \pi^- \pi^+ \pi^+$

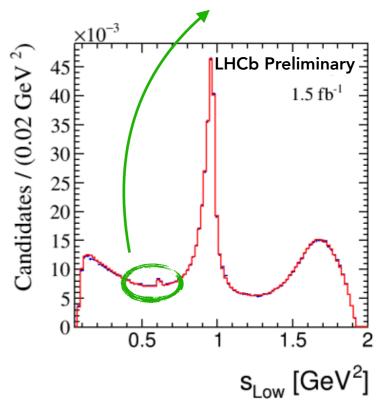
	· -		
Resonance	Magnitude	Phase $[^o]$	Fit Fraction
$\rho(770)^0$	$0.1201 \pm 0.0030 \pm 0.0050 \pm 0.0062$	$79.4 \pm 1.8 \pm 7.8 \pm 4.4$	$1.038 \pm 0.054 \pm 0$
$\omega(782)$	$0.04001 \pm 0.00090 \pm 0.0018 \pm 0.00086$	$-109.9 \pm 1.7 \pm 0.94 \pm 1.4$	$0.360 \pm 0.016 \pm 0$
$ ho(1450)^{0}$	$1.277 \pm 0.026 \pm 0.023 \pm 0.48$	$-115.2 \pm 2.6 \pm 2.8 \pm 10$	$3.86 \pm 0.15 \pm 0$
$\rho(1700)^0$	$0.873 \pm 0.061 \pm 0.054 \pm 0.62$	$-60.9 \pm 6.1 \pm 6.7 \pm 12$	$0.365 \pm 0.050 \pm 0$
$f_2(1270)$	1 (fixed)	0 (fixed)	$13.69 \pm 0.14 \pm 0$
$f_2'(1525)$	$0.1098 \pm 0.0069 \pm 0.019 \pm 0.015$	$178.1 \pm 4.2 \pm 12 \pm 7$	$0.0528 \pm 0.0070 \pm 0$
S-wave			$84.97 \pm 0.14 \pm 0$

Fit Fraction (%)
$1.038 \pm 0.054 \pm 0.097 \pm 0.11$
$0.360 \pm 0.016 \pm 0.034 \pm 0.016$
$3.86 \pm 0.15 \pm 0.14 \pm 2.0$
$0.365 \pm 0.050 \pm 0.045 \pm 0.34$
$13.69 \pm 0.14 \pm 0.22 \pm 0.49$
$0.0528 \pm 0.0070 \pm 0.015 \pm 0.0087$
$84.97 \pm 0.14 \pm 0.30 \pm 0.63$

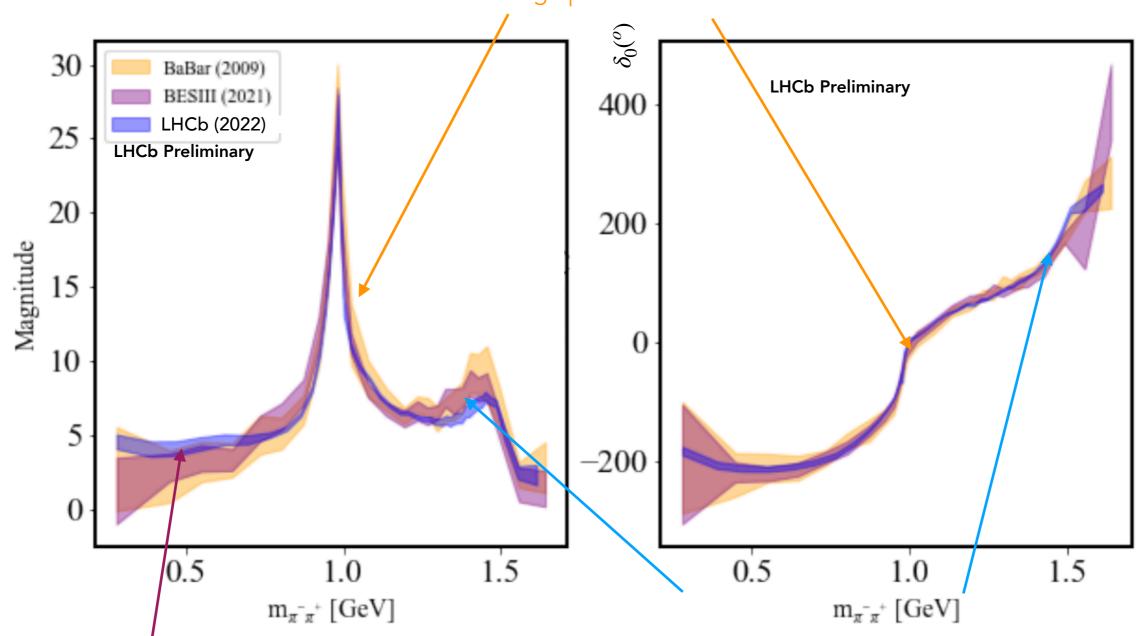

$s_{\textrm{High}}\,[\textrm{GeV}^2]$ **LHCb Preliminary** -2 -3 -4 -5 1.5 0.5 s_{Low} [GeV²]


Interference fit fractions


Fernanda Abrantes, ICHEP2022


	$\omega(782)$	$\rho(770)^{0}$	$\rho(1450)^{0}$	$\rho(1700)^{0}$
$\omega(782)$	0.360 ± 0.016			
$\rho(770)^{0}$	0.128 ± 0.013	1.038 ± 0.054		
$ ho(1450)^{0}$	0.36 ± 0.14	0.148 ± 0.14	3.86 ± 0.15	
$\rho(1700)^{0}$	0.089 ± 0.010	$-0.307 \pm 0.0.55$	1.92 ± 0.20	0.365 ± 0.050
$f_2(1270)$	-0.1540 ± 0.0040	0.280 ± 0.029	-1.10 ± 0.047	-0.376 ± 0.047
$f_2'(1525)$	0.00827 ± 0.00063	0.00283 ± 0.0038	0.066 ± 0.0021	0.0200 ± 0.0021
S-wave	-0.053 ± 0.0099	0.804 ± 0.076	-1.520 ± 0.086	-0.934 ± 0.086
	$f_2(1270)$	$f_2'(1525)$	S-wave	
$f_2(1270)$	13.69 ± 0.14			
$f_2'(1525)$	-0.429 ± 0.072	0.0455 ± 0.0070		
S-wave	-3.460 ± 0.092	0.20 ± 0.013	84.97 ± 0.14	

S-wave is dominant!



$D_{\rm S}^+ \to \pi^- \pi^+ \pi^+$: Extracted $\pi^- \pi^+$ S-Wave amplitude

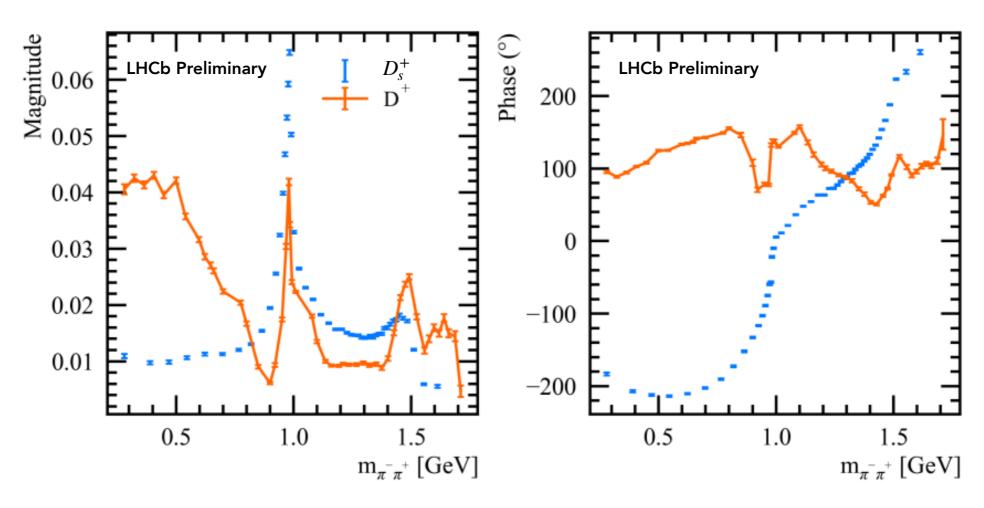
LHCb-PAPER-2022-030 in preparation

Signature of $f_0(980)$: Peak in the magnitude and large phase variation near 1.0 GeV

Magnitude of the S-wave is small indicating no contribution from the $f_0(500)$

Rapid growth of phase towards the end of the spectrum indicates the presence of at least one more scalar resonance, for instance $f_0(1500)$ (also enhanced by the opening of $\eta\eta'$ channel)

Summary $D_{\scriptscriptstyle S}^+ \to \pi^-\pi^+\pi^+$


Principal contributions:

- Detailed measurement of the $\pi^-\pi^+$ S-wave amplitude
 - Precision improved from previous analyses
- $D_s^+ o (\omega(782) o \pi^-\pi^+)\pi^+$: first time observed in $D_s^+ o \pi^-\pi^+\pi^+$
 - $\omega(782) \to \pi^- \pi^+$: $(0.360 \pm 0.016 \pm 0.034 \pm 0.016) \%$
- $D_s^+ o
 ho (1700)^0 \pi^+$ and $D_s^+ o f_2' (1525) \pi^+$ also observed for the first time in $D_s^+ o \pi^- \pi^+ \pi^+$
- S-wave also found to be dominant (in agreement with previous observations) ~85%
- Small contribution from $\rho(770)^0\pi^+$ (in agreement with previous analyses)
- Best fit result includes the $\rho(1700)^0$ state
 - Combined fit fraction of the $ho(1450)^0$ and $ho(1700)^0$ amplitudes is stable

Let's now compare the two channels...

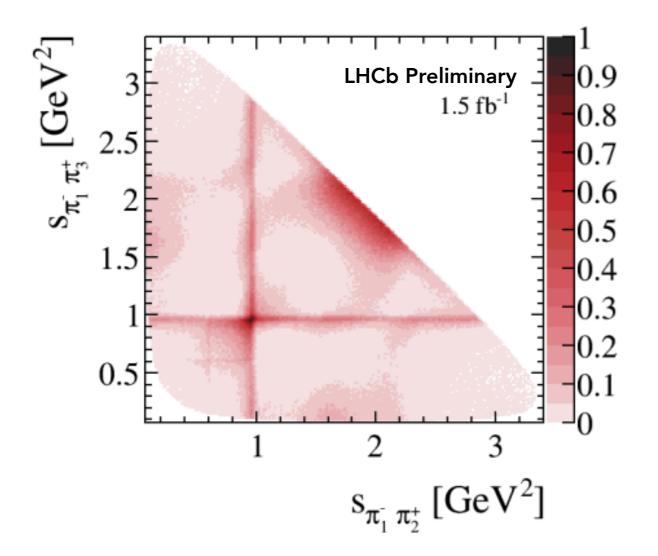
D_s^+ vs D^+ : S-wave

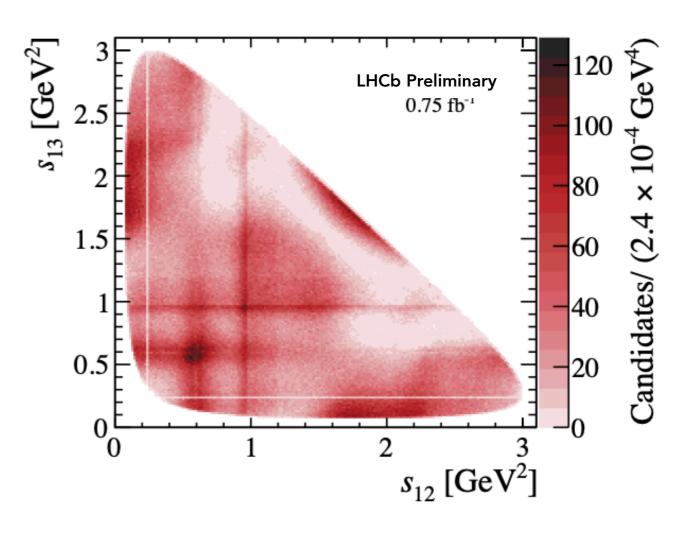
(Statistical uncertainties only)

- S-wave as the major contribution (~85% for D_s^+ and ~61% for D^+)
- $f_0(980)$ is the most prominent contribution in D_s^+ and $f_0(500)$ in D_s^+
- No indication of a scalar resonance at low $\pi^-\pi^+$ mass for D_s^+
- Indication of at least one scalar resonances near 1.5 MeV for both modes
 - Enhanced by the opening of the $\eta\eta'$ channel
- Different composition for D_s^+ and D^+ : S-wave produced from different sources...

D_s^+ vs D^+ : P- and D-waves

P-wave


- $D_{(s)}^+ \to (\omega(782) \to \pi^-\pi^+)\pi^+$: first time observed in both channels
 - $\omega(782)$ is produced by different mechanisms in both decays
 - $\rho(770)^0$ contributes with ~26% for D^+ and ~1% for D_s^+
- $D_{(s)}^+$: Both $\rho(1450)^0$ and $\rho(1700)^0$ are necessary for a good fit
 - Combined contributions are very similar, $(6.14 \pm 0.27) \%$ in D_s^+ , and $(7.1 \pm 0.8) \%$ in D_s^+


Same resonances in both D_s^+ and D^+ modes but very different contributions!!

D-wave

- $f_2(1270)$ as the largest contribution for both channels
 - Identical contribution in both channels (~13%)
 - Intriguing result! Given its quark content, one would expect the production of the $f_2(1270)$ at a higher rate from a $d\bar{d}$ source (D^+) than an $s\bar{s}$ source as in D_s^+
- $f_2'(1525)$ only seen in the D_s^+ channel: dominant $s\bar{s}$ and small $(d\bar{d}+u\bar{u})$ component

D_s^+ vs D^+ : Conclusions

- Very different resonant structure in spite of the final state being the same
- Conclusion: Scalar resonances are produced by different mechanisms in these decays

LHCb-PAPER-2022-016 and LHCb-PAPER-2022-030 in preparation

Backup Slides

D^+ : previous analyses

	_	
 		4
_		

	Fit 1	Fit 2
	Fraction (%)	Fraction (%)
	magnitude	magnitude
Mode	phase	phase
$\sigma\pi^+$		$46.3 \pm 9.0 \pm 2.1$
	• • •	$1.17 \pm 0.13 \pm 0.06$
		$(205.7 \pm 8.0 \pm 5.2)^{\circ}$
$ ho^{0}(770)\pi^{+}$	20.8 ± 2.4	$33.6 \pm 3.2 \pm 2.2$
	1 (fixed)	1 (fixed)
	0 (fixed)	0 (fixed)
NR	38.6 ± 9.7	$7.8 \pm 6.0 \pm 2.7$
	1.36 ± 0.20	$0.48 \pm 0.18 \pm 0.09$
	$(150.1 \pm 11.5)^{\circ}$	$(57.3 \pm 19.5 \pm 5.7)^{\circ}$
$f_0(980)\pi^+$	7.4 ± 1.4	$6.2 \pm 1.3 \pm 0.4$
	0.60 ± 0.07	$0.43 \pm 0.05 \pm 0.02$
	$(151.8 \pm 16.0)^{\circ}$	$(165.0 \pm 10.9 \pm 3.4)^{\circ}$
$f_2(1270)\pi^+$	6.3 ± 1.9	$19.4 \pm 2.5 \pm 0.4$
	0.55 ± 0.08	$0.76 \pm 0.06 \pm 0.03$
	$(102.6 \pm 16.0)^{\circ}$	$(57.3 \pm 7.5 \pm 2.9)^{\circ}$
$f_0(1370)\pi^+$	10.7 ± 3.1	$2.3 \pm 1.5 \pm 0.8$
	0.72 ± 0.12	$0.26 \pm 0.09 \pm 0.03$
	$(143.2 \pm 9.7)^{\circ}$	$(105.4 \pm 17.8 \pm 0.6)^{\circ}$
$ ho^0(1450)\pi^+$	22.6 ± 3.7	$0.7 \pm 0.7 \pm 0.3$
	1.04 ± 0.12	$0.14 \pm 0.07 \pm 0.02$
	$(45.8 \pm 14.9)^{\circ}$	$(319.1 \pm 39.0 \pm 10.9)^{\circ}$

PRL 86 (2001) 770

CLEO

PRD 76 (2007) 012001

Mode	Amplitude (a.u.)	Phase (°)	Fit fraction (%)
$\overline{\rho(770)\pi^+}$	1 (fixed)	0 (fixed)	$20.0 \pm 2.3 \pm 0.9$
$f_0(980)\pi^+$	$1.4 \pm 0.2 \pm 0.2$	$12 \pm 10 \pm 5$	$4.1 \pm 0.9 \pm 0.3$
$f_2(1270)\pi^+$	$2.1 \pm 0.2 \pm 0.1$	$-123 \pm 6 \pm 3$	$18.2 \pm 2.6 \pm 0.7$
$f_0(1370)\pi^+$	$1.3 \pm 0.4 \pm 0.2$	$-21 \pm 15 \pm 14$	$2.6 \pm 1.8 \pm 0.6$
$f_0(1500)\pi^+$	$1.1 \pm 0.3 \pm 0.2$	$-44 \pm 13 \pm 16$	$3.4 \pm 1.0 \pm 0.8$
σ pole	$3.7 \pm 0.3 \pm 0.2$	$-3 \pm 4 \pm 2$	$41.8 \pm 1.4 \pm 2.5$

FOCUS

PLB 585 (2004) 200

<i>P-vector</i> parameters	modulus	phase (deg)
eta_1	1 (fixed)	0 (fixed)
eta_2	2.471 ± 0.431	82.5 ± 10.3
eta_3	1.084 ± 0.386	102.8 ± 23.5
$f_{11}^{ m prod}$	2.565 ± 0.737	155.4 ± 18.3
$f_{12}^{ m prod}$	6.312 ± 0.967	-160.0 ± 8.7

decay channel	fit fraction $(\%)$	phase (deg)	amplitude coefficient
$(S$ -wave) π^+	$56.00 \pm 3.24 \pm 2.08$	0 (fixed)	1 (fixed)
$f_2(1270) \pi^+$	$11.74 \pm 1.90 \pm 0.23$	$-47.5 \pm 18.7 \pm 11.7$	$1.147 \pm 0.291 \pm 0.047$
$\rho^0(770) \pi^+$	$30.82 \pm 3.14 \pm 2.29$	$-139.4 \pm 16.5 \pm 9.9$	$1.858 \pm 0.505 \pm 0.033$
Fit C.L.	7.7 %		

D_s^+ : previous analyses

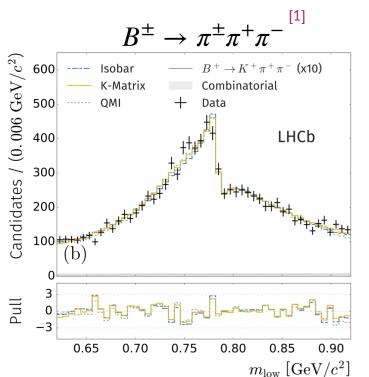
PRL 86 (2001) 765 **E791**

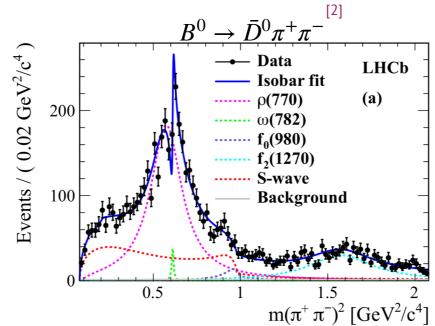
	Fit A fraction (%) magnitude phase
$f_0(980)\pi^+$	$56.5 \pm 4.3 \pm 4.7$
	1 (fixed)
N.	0 (fixed)
Nonresonant	$0.5 \pm 1.4 \pm 1.7$
	$0.09 \pm 0.14 \pm 0.04$
0(770) -+	$(181 \pm 94 \pm 51)^{\circ}$
$ ho^{0}(770)\pi^{+}$	$5.8 \pm 2.3 \pm 3.7$
	$0.32 \pm 0.07 \pm 0.19$
£ (1270) = ‡	$(109 \pm 24 \pm 5)^{\circ}$ $19.7 \pm 3.3 \pm 0.6$
$f_2(1270)\pi^+$	$0.59 \pm 0.06 \pm 0.02$
	$(133 \pm 13 \pm 28)^{\circ}$
$f_0(1370)\pi^+$	$32.4 \pm 7.7 \pm 1.9$
$f_0(1370)\pi$	$0.76 \pm 0.11 \pm 0.03$
	$(198 \pm 19 \pm 27)^{\circ}$
$\rho^0(1450)\pi^+$	$4.4 \pm 2.1 \pm 0.2$
p (1430)#	$0.28 \pm 0.07 \pm 0.01$
	$(162 \pm 26 \pm 17)^{\circ}$
$m_{f_0(980)}(\text{MeV}/c^2)$	$977 \pm 3 \pm 2$
8#	$0.09 \pm 0.01 \pm 0.01$
g _K	$0.02 \pm 0.04 \pm 0.03$
$m_{f_0(1370)}({ m MeV}/c^2)$	$1434 \pm 18 \pm 9$
$\Gamma_{f_0(1370)}(\text{MeV}/c^2)$	$172 \pm 32 \pm 6$
χ^2/ν	71.8/68
C.L.	35%
$-2 \ln \mathcal{L}_{\text{max}}$	-3204

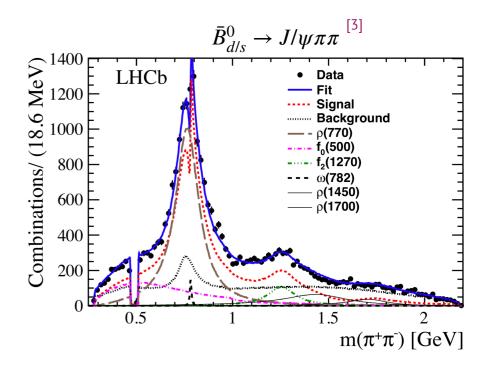
1			PRD 7
รล	вa	r	ו ווע

PRD 79 (2009) 032003

Decay mode	Decay fraction (%)	Amplitude	Phase (rad)
$f_2(1270)\pi^+$ $\rho(770)\pi^+$ $\rho(1450)\pi^+$ S wave Total χ^2/NDF	$10.1 \pm 1.5 \pm 1.1$ $1.8 \pm 0.5 \pm 1.0$ $2.3 \pm 0.8 \pm 1.7$ $83.0 \pm 0.9 \pm 1.9$ $97.2 \pm 3.7 \pm 3.8$ $\frac{437}{422-64} = 1.2$	1.0 (fixed) 0.19 ± 0.02 ± 0.12 1.2 ± 0.3 ± 1.0 Table II	0.0 (fixed) 1.1 ± 0.1 ± 0.2 4.1 ± 0.2 ± 0.5 Table II

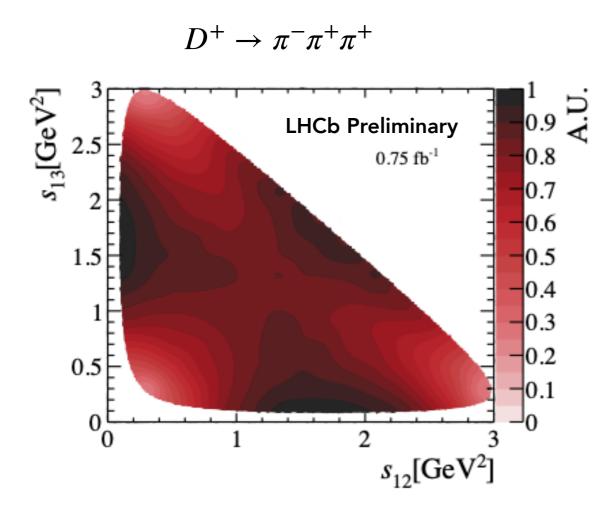

BESIII

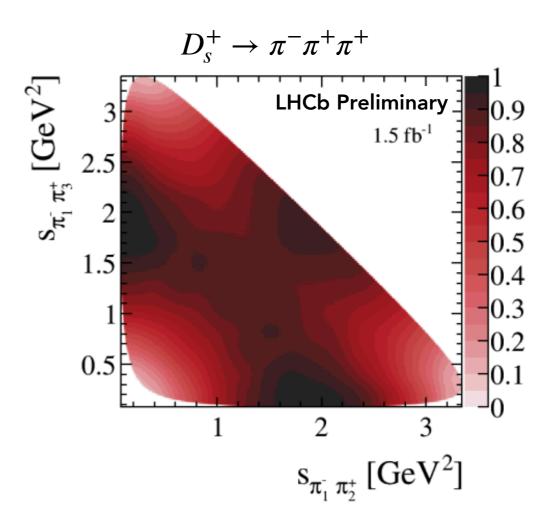

arXiv:2108.10050


	Fit fraction (%)	Magnitude	Phase (radians)
,	$10.5 \pm 0.8 \pm 1.2$	1. (Fixed)	0. (Fixed)
$\rho(770)\pi^{+}$	$0.9 \pm 0.4 \pm 0.5$	$0.13\pm0.03\pm0.04$	$5.44 \pm 0.25 \pm 0.62$
$\rho(1450)\pi^{+}$	$1.3 \pm 0.4 \pm 0.5$	$0.91\pm0.16\pm0.22$	$1.03 \pm 0.32 \pm 0.51$
\mathcal{S} wave	$84.2 \pm 0.8 \pm 1.3$	Table III	Table III
Total	$96.8 \pm 2.4 \pm 3.5$		

$\rho - \omega$ interference

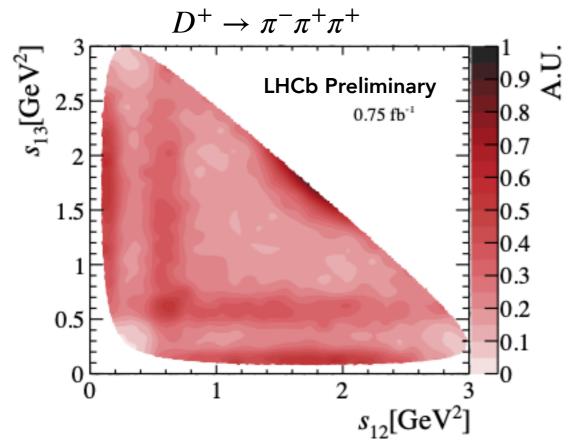
Different ρ - ω profiles depending on the decay channel!


Possible mixing parametrisation

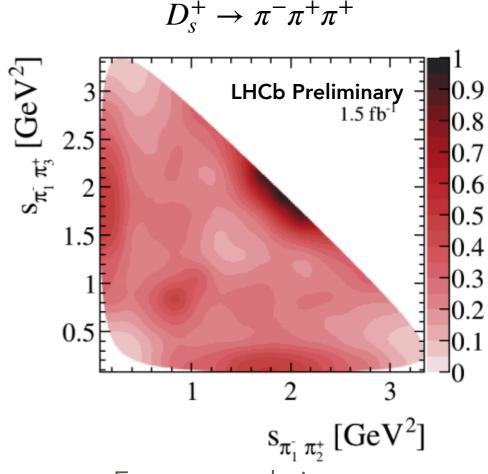

$$A_{\rho-\omega} = A_{\rho} \left[\frac{1 + A_{\omega} \Delta |B| \exp(i\phi_{B})}{1 - \Delta^{2} A_{\rho} A_{\omega}} \right] \qquad \Delta = \delta \left(m_{\rho} + m_{\omega} \right)$$

 $\delta \approx 2.15 MeV$

Efficiency maps


- Obtained from total simulated sample, which was generated as an uniform Dalitz Plot distribution
- Incorporates all steps of the selection process with except of PID
- PID incorporated through per-event weights to the simulated decays, from data calibration samples
- 15x15 bins
- 2D cubic spline based on the code LauCubicSpline from Laura++[1] to produce a high resolution smoothed histogram.

D^+ : Background


- Composition: 3-track random combinations + $D_{(s)}^+ \to \eta(')\pi^+$ + random $\rho\pi$ combination + negligible partially reconstructed charm
- Approximately 5% of our final data sample
- Background within the signal region is assumed to be a composition of both sidebands
- Spline procedure based on Laura++ code

Events populating:

[1810,1830] MeV

[1910,1930] MeV

Events populating:

[1920,1940] MeV

[2000,2020] MeV

Systematic Uncertainties

Sources considered:

Experimental uncertainties: efficiency correction, background parametrisation, selection, finite detector resolution

Model systematics: uncertainties in lineshape parameters

Efficiency:

- Finite size of simulated sample: vary bin content within its uncertainty
- PID efficiency: size of calibration sample. Vary values of efficiency and correction factors
- Binning scheme: 12x12, 15x15, 20x20

Background:

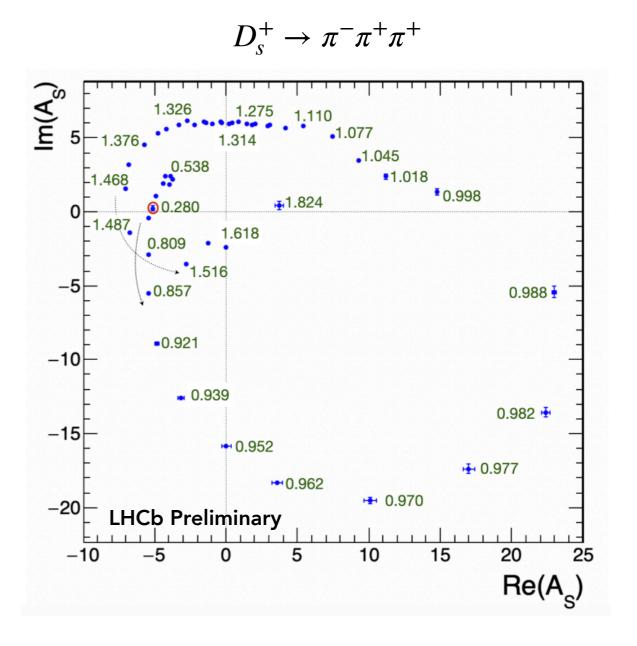
- Purity: vary $\pm 1\sigma$ according to the uncertainty from the mass fit
- Shape: only left or right wing as background model

QMIPWA:

Parametrisation of the S-wave: vary the number of knots used

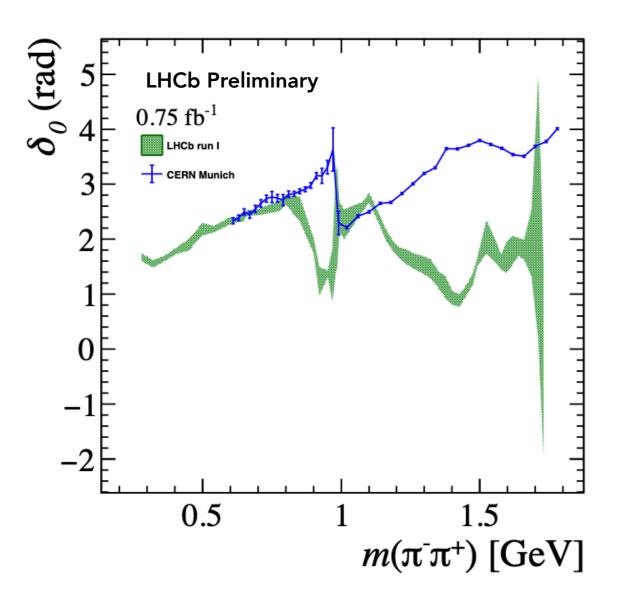
Fit bias and QMIPWA modelling:

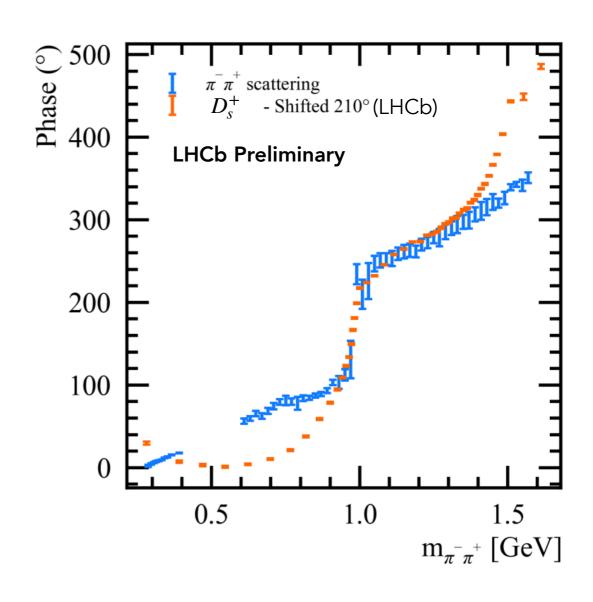
Generate toys with a given binning scheme and fit each toy using the nominal binning.
 Observe the resulting distributions for each parameter and compare with the input.


Model systematics:

- Amplitude components: vary each lineshape parameter (masses and widths) within $\pm 1\sigma$
- Effective barrier radii of mesons: vary Blatt Weisskopf radius $r_{F_{D,Rp_3}} = 4.0, 5.0, 6.0 \text{ GeV}^{-1}$ and $r_{F_{R,p_1p_2}} = 1.0, 1.5, 2.0 \text{ GeV}^{-1}$

22


Argand plots



Comparison with scattering experiment

$$D^+ \rightarrow \pi^- \pi^+ \pi^+$$

$$D_s^+ \to \pi^-\pi^+\pi^+$$

