

Physics beyond Colliders - Emergent Phenomena

Higgs mechanism

QCD dynamics

Proton
Mass $\approx 1.78 \times 10^{-26}$ g

~ 1% of proton mass

(~ 10 MeV)

QCD dynamics

Proton
Mass $\approx 168 \times 10^{-26}$ g

~ 99% of proton mass

(~ 928 MeV)

Apparatus for Meson and Baryon Experimental Research

Use M2 beam in the CERN/SPS North Area Versatile beams (muons and hadrons of both charges) Beam momenta from 50 - 280 GeV/c Intensity limited by radiation protection

Apparatus for Meson and Baryon Experimental Research

	Beam	Target	Additional Hardware	
Proton radius measurement	100 GeV muons	high pressure Hydrogen	active target TPC, tracking stations (SciFi, Silicon)	Phase 1 (approved)
Antiproton production cross section	50 GeV - 280 GeV protons	LH ₂ , LHe	Liquid He target	
Drell-Yan measurements with pions	190 GeV charged pions	Carbon, Tungsten		
Drell-Yan measurements with Kaons	~100 GeV charged Kaons	Carbon, Tungsten	vertex detectors, 'active absorber'	Phase 2 (in preparation) ▶
Prompt photon measurements	> 100 GeV charged Kaon/pion beams	LH ₂ , Nickel	hodoscopes	
K-induced spectroscopy	50 GeV - 100 GeV charged Kaons	LH ₂	recoil ToF, forward PID	

University A problem of size of Glasgow - proton radius - proton radius

Apparatus for Meson and Baryon Experimental Research

got its neck

arrange a crash?

WINDS OF CHANGE

Apparatus for Meson and Baryon Experimental Research

AMBER arbitrary value indicating precision

Proton Radius Measurement

Apparatus for Meson and Baryon Experimental Research

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} R \left(\epsilon G_E^2 + \tau G_M^2 \right)$$

- 100 GeV muon beam
- Active-target TPC with highpressure H₂ (20 bar)
- $10^{-3} < Q^2 < 4x10^{-2} \text{ GeV}^2$
- Expected precision on the proton radius ~0.01 fm

AMBER projection

Proton Radius Measurement

Apparatus for Meson and Baryon Experimental Research

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} R \left(\epsilon G_E^2 + \tau G_M^2 \right)$$

- 100 GeV muon beam
- Active-target TPC with highpressure H₂ (20 bar)
- $10^{-3} < Q^2 < 4x10^{-2} \text{ GeV}^2$
- Expected precision on the proton radius ~0.01 fm

AMBER projection

And now for something completely different

Apparatus for Meson and Baryon Experimental Research

Nuclear Physics (i.e. cross sections) dominant uncertainty in region of interest

AMBER - antiproton production

Apparatus for Meson and Baryon Experimental Research

- •Secondary p beam with 50, 100, 150, 200, 280 GeV
- Liquid H₂ and He target
- •Minimum bias trigger allowing beam intensity of 5 · 10⁵ s⁻¹
- Beam-proton ID in CEDARs, produced antiproton ID in RICH
- •Measure differential cross section in 10 bins in p momentum & pseudo-rapidity $2.4 < \eta < 5.6$
- •Statistical uncertainty ≈ 0.5 1% per data point
- •Total systematic uncertainty ≈ 5% (efficiencies, dead time)

Drell-Yan measurements

Apparatus for Meson and Baryon Experimental Research

- charged K/π beams (190 GeV/c)
- inclusive measurement of lepton pair
- access to quark/gluon content of mesons
- high statistics runs

Drell-Yan setup

Apparatus for Meson and Baryon Experimental Research

- Isoscalar target(s)
- 190 GeV/c beam

Pion Structure

Apparatus for Meson and Baryon Experimental Research

$$u_{val}^{\pi^+} = u^{\pi^+} - \bar{u}^{\pi^+} \quad d_{val}^{\pi^-} = d^{\pi^-} - \bar{d}^{\pi^-}$$

assuming isospin symmetry:

$$\frac{\Sigma_{\text{sea}}}{\Sigma_{\text{val}}} = \frac{4\sigma^{\pi^{+}\text{C}} - \sigma^{\pi^{-}\text{C}}}{-\sigma^{\pi^{+}\text{C}} + \sigma^{\pi^{-}\text{C}}}$$

Looking to the future - AMBER phase 2

Apparatus for Meson and Baryon Experimental Research

High purity Kaon beams are being proposed for a Phase 2 of AMBER:

- Kaon structure from Kaon-induced Drell-Yan and Charmonium production
- Gluon content in the Kaon from direct-photon production
- Light meson spectroscopy using Kaon beams
- Kaon charge radius from elastic Kaon-electron scattering

Summary

- AMBER (NA66) is a new QCD fixed target facility at CERN (Physics Beyond Colliders)
- Wide range of beam energies and particles
- Three main measurement aims in Phase 1 (approved):
 - Proton radius measurement with high energy muons
 - Anti-proton cross section measurement to constrain dark matter searches
 - Meson structure using Drell-Yan process (mostly pions)
- Extension of physics programme in Phase 2 (in preparation)