

Spectroscopy and decays of b-hadrons at LHCb

Dong Ao

On behalf of LHCb collaboration

Introduction

- Over the past 10 years the LHC has discovered 59 new hadrons, mainly from LHCb.
- Studying heavy flavour spectroscopy allows us to further our understanding of how conventional hadrons, tetraquarks and pentaquarks are formed.

- Single arm forward spectrometer covering the range $2 < \eta < 5$
- Very good particle identification and tracking
- b-factory: $\sigma_{b\bar{b}} = 144 \pm 21 \ \mu b^{-1}$ ($\sqrt{s} = 13 \ \text{TeV}$)

Outline

- Observation of the decay $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$ <u>Phys. Rev. Lett. 128, 191803.</u>
- Observation of two new excited Ξ_b^0 states decaying to $\Lambda_b^0 K^- \pi^+$ <u>Phys. Rev. Lett. 128, 162001.</u>
- Study of the B_c^+ decays into charmonia and three light hadrons JHEP 01 (2022) 65

arXiv:2201.03497

Published in Phys. Rev. Lett. 128, 191803.

- $\mathcal{R}(D^{*+}) \equiv \mathcal{B}(\overline{B}^0 \to D^{*+}\tau^- \overline{\nu}_{\tau})/\mathcal{B}(\overline{B}^0 \to D^{*+}\mu^- \overline{\nu}_{\mu})$ have been measured by LHCb using $\tau^- \to \pi^+\pi^-\pi^-(\pi^0)\nu_{\tau}$. [Phys. Rev. D 97, 072013 (2018).]
- $\mathcal{R}(\Lambda_c^+) \equiv \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu})$ have very precise theory predictions ($\mathcal{R}(\Lambda_c^+) = 0.324 \pm 0.004$) in SM frame. [Phys. Rev. Lett. 121 (2018) 202001.]
- Normalization mode $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$ is used to determine the ratio of branching fractions: $\kappa(\Lambda_c^+) = \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-)$
- Using $\tau^- \rightarrow \pi^+ \pi^- \pi^- (\pi^0) \nu_\tau$

 3D (q², τ, BDT output) binned maximum-likelihood fit to extract signal yield

$$q^2 \colon m^2(\tau^- \bar{\nu}_\tau) = \left(p_{\Lambda_b^0} - p_{\Lambda_c^+}\right)^2$$

Missing the momentum of $\bar{\nu}_{\tau}$ $p_{\Lambda_b^0}$ is reconstructed with resolution about 7%

Distribution of q^2 with BDT output below(left) and above(right) 0.66

- Background $\Lambda_b^0 \to \Lambda_c^+ D_s^-(X)$ is obtained from fit to $m(\Lambda_c^+ \pi^+ \pi^- \pi^-)$ which require $|m(\pi^+ \pi^- \pi^-) - m(D_s^-)| < 45 \text{ MeV}/c^2$.
- The results are used to constrain the relative yields of $\Lambda_b^0 \rightarrow \Lambda_c^+ D_s^-(X)$ in 3D fit
- Yields of normalization mode $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^+ \pi^- \pi^-$ is obtained with fit to $m(\Lambda_c^+ \pi^+ \pi^- \pi^-)$
- Λ_b^0 signal described with Crystal Ball function
- Results
- $\kappa(\Lambda_c^+) = 2.46 \pm 0.27 \pm 0.40$
- $\mathscr{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}) = (1.50 \pm 0.16 \pm 0.25 \pm 0.23)\%$
- $\mathcal{R}(\Lambda_{\mathcal{C}}^+)=0.242\pm0.026\pm0.040\pm0.059$, lower than but agree with SM prediction

ICHEP2022

Observation of two new excited Ξ_b^0 states decaying to $\Lambda_b^0 K^- \pi^+$

arXiv:2110.04497

Published in Phys. Rev. Lett. 128, 162001.

Observation of two new excited Ξ_b^0 states

- Several excited Λ_b^0 states have been observed, leading to the investigation of the excited Ξ_b states due to their similar properties.
- Recently the LHCb collaboration reported the observation of the $\Xi_b(6227)^-$ [Phys. Rev. Lett. 121, 072002] and $\Xi_b(6227)^0$ [Phys. Rev. D 103, 012004]
- Two 1D Ξ_b^0 are predicted with decays dominated by the $\Sigma_b^{(*)}K$ and $\Xi_b^{*,\prime}\pi$ modes

Observation of two new excited Ξ_b^0 states

- Candidates with mass in a 2.5 σ window around the Λ_b^0 mass are used to form $\Lambda_b^0 K^- \pi^+$.
- To estimate the combinatorial background, the wrong sign candidates are reconstructed with a $\Lambda_b^0 K^- \pi^+$ final state.

Peaks modelled by relativistic Breit-Wigner function convolved with a resolution function.
$$\begin{split} m_{\Xi_b(6327)^0} &= 6327.26^{+0.23}_{-0.21} \pm 0.08 \pm 0.24 \; \text{MeV} \\ m_{\Xi_b(6333)^0} &= 6332.67^{+0.17}_{-0.18} \pm 0.03 \pm 0.22 \; \text{MeV} \end{split}$$

Observation of two new excited Ξ_b^0 states

- Resonance structures in excited Ξ_b^0 decays are studied by mass fits to data samples in 5 MeV slices of the $m(\Lambda_b^0 \pi^+)$
- Mass and width parameters of the two Ξ_b^0 states are fixed to the nominal fit values.

• Resonance structures consistent with the theoretical predictions of a doublet of 1D Ξ_b^0 states with $J^P = 3/2^+$ and $5/2^+$ [Phys. Rev. D 100, 094032] [Phys. Rev. D 98, 076015]

ICHEP2022

Study of the B_c^+ decays into charmonia and three light hadrons

arXiv:2111.03001

Published in JHEP 01 (2022) 65

Study of the $B_c^+ \rightarrow \psi 3h$

• Only 3 decay modes of $B_c^+ \rightarrow \psi 3h$ are seen on LHCb previously [Phys. Rev. Lett. 108, 251802] [Phys. Rev. Lett. 113, 152003] [JHEP11(2013)094]

• 4 decay modes of $B_c^+ \rightarrow \psi 3h$ are first observed

• $B_c^+ \rightarrow \psi(2S)(\rightarrow J/\psi\pi^+\pi^-)\pi^+$ first observed through $B_c^+ \rightarrow J/\psi\pi^+\pi^-\pi^+$

Decay	Yield	$\mathcal{S}~[\sigma]$
$\rm B_c^+\!\to J\!/\!\psi\pi^+\pi^-\pi^+$	2750 ± 69	
$\rm B_c^+\!\to J\!/\!\psi \rm K^+\rm K^-\pi^+$	686 ± 48	
$\rm B_c^+\!\to J\!/\!\psi \rm K^+\rm K^-\rm K^+$	43 ± 10	5.2
$\rm B_c^+\!\to J\!/\!\psi \rm K^+\pi^-\pi^+$	148 ± 22	7.8
$B_c^+\!\rightarrow\psi(2S)\pi^+\pi^-\pi^+$	49 ± 11	5.8
$B_c^+\!\rightarrow\psi(2S)K^+K^-\pi^+$	19 ± 6	3.7
$B_c^+\!\rightarrow(\psi(2S)\!\rightarrow J\!/\!\psi\pi^+\pi^-)\pi^+$	54 ± 9	11.8
Parameter	Value	
$m_{ m B_c^+}$ [MeV/ c^2]	6274.14 ± 0.26	
$m_{\psi(2\mathrm{S})} \; [\mathrm{MeV}/c^2]$	3686.05 ± 0.01	

Study of the $B_c^+ \rightarrow \psi 3h$

• Resonance structures in $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$ JHEP 01 (2022) 65

Parameter		Value
$f^{\mathrm{B}^+_c ightarrow \mathrm{J}/\psi\pi^+\pi^-\pi^-}_{ ho^0}$	+ [%]	88.1 ± 3.0
$f_{\rm R}^{\rm B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+}$	+ [%]	10.4 ± 1.4
$m_{ m R}$	$\left[\text{MeV}/c^2\right]$	1265 ± 10
$\Gamma_{ m R}$	[MeV]	110 ± 21
$\mathcal{S}_{ ext{R}}$	[σ]	8

- Structure near $m_{\pi^+\pi^-} \sim 1.3 \text{ GeV/c}^2$: referred to as R
- The obtained mass, width and fraction of R is consistent with those for $a_1(1260)^+ \rightarrow f_0(1370)(\rightarrow \pi^+\pi^-)\pi^+$ obtained by CLEO Phys. Rev. D 61 (2000) 012002

$$\begin{split} f_{\overline{\mathbf{K}}^{*0}}^{\mathbf{B}_{\mathbf{c}}^{+} \to \mathbf{J}/\psi \,\mathbf{K}^{+}\mathbf{K}^{-}\pi^{+}} &= \left(64.5 \pm 4.7 \, ^{+\,3.9}_{-\,4.8} \right) \% \\ f_{\Phi}^{\mathbf{B}_{\mathbf{c}}^{+} \to \mathbf{J}/\psi \,\mathbf{K}^{+}\mathbf{K}^{-}\pi^{+}} &< 4.2 \, (4.8)\% \end{split}$$

Gaussian constraints to the PDG values for the width and mass of \overline{K}^{*0} and ϕ are used

Study of the $B_c^+ \rightarrow \psi 3h$

 Ratios of branching fractions from this measurement are compared with theory and previous experiments

				V_{alua} $[10^{-2}]$
Ratio	Value	Prediction, measurement	$\mathcal{R}^{\mathrm{J/\psiK^+K^-K^+}}_{\mathrm{J/\psiK^+K^-\pi^+}}$	$7.0 \pm 1.8 \pm 0.2$
$\mathcal{R}^{\psi(2S)K^+K^-\pi^+}_{\psi(2S)\pi^+\pi^-\pi^+}$	$0.37 \pm 0.15 \pm 0.01$	0.16	${\cal R}^{\mathrm{J}\!/\!\psi\mathrm{K}^+\pi^-\pi^+}_{\mathrm{J}\!/\!\psi\pi^+\pi^-\pi^+}$	$6.4\pm1.0\pm0.2$
$\mathcal{R}^{\mathrm{J/\psiK^+\pi^-\pi^+}}_{\mathrm{J/\psiK^+K^-\pi^+}}$	$0.35 \pm 0.06 \pm 0.01$	0.37	${\cal B}({\rm B}_{\rm c}^+\!\rightarrow J\!/\!\psi{\rm K}^+)$	7.9 ± 0.8
$\mathcal{R}^{\mathrm{J/\psiK^+\pi^-\pi^+}}_{\mathrm{J/\psi\pi^+\pi^-\pi^+}}$	$(6.4\pm1.0\pm0.2)\times10^{-2}$	7.7×10^{-2}	$\mathcal{B}(\mathrm{B}^+_\mathrm{c} o \mathrm{J}/\!\psi\pi^+)$	1.0 ± 0.0
${\cal R}^{{ m J}\!/\!\psi{ m K}^+{ m K}^-\pi^+}_{{ m J}\!/\!\psi\pi^+\pi^-\pi^+}$	$0.185 \pm 0.013 \pm 0.006$	0.21	$\frac{\mathcal{B}(\mathrm{B}^+ \to \overline{\mathrm{D}}{}^0\mathrm{K}^+\pi^-\pi^+)}{\mathcal{B}(\mathrm{B}^+ \to \overline{\mathrm{D}}{}^0\pi^+\pi^-\pi^+)}$	9.3 ± 5.1
$\mathcal{R}^{\psi(2S)\pi^+}_{J\!/\!\psiK^+K^-\pi^+}$	$0.19 \pm 0.03 \pm 0.01$	0.18 ± 0.04	$\underline{\mathcal{B}(\mathrm{B}^0\!\rightarrow\mathrm{D}^-\mathrm{K}^+\pi^-\pi^+)}$	5.8 ± 1.5
$\mathcal{R}^{\psi(2\mathrm{S})\pi^+}_{\mathrm{J/}\psi\pi^+\pi^-\pi^+}$	$(3.5\pm 0.6\pm 0.2)\times 10^{-2}$	$(3.9\pm 0.9)\times 10^{-2}$	$\mathcal{B}(\mathrm{B}^{0} \to \mathrm{D}^{-}\pi^{+}\pi^{-}\pi^{+})$	0.0 ± 1.0
${\cal R}^{{ m J}\!/\!\psi{ m K}^+{ m K}^-\pi^+}_{{ m J}\!/\!\psi\pi^+\pi^-\pi^+}$	$0.185 \pm 0.013 \pm 0.006$	0.22 ± 0.06	$\frac{\mathcal{B}(\mathrm{B}^{0}\to\mathrm{D}^{*-}\mathrm{K}^{+}\pi^{-}\pi^{+})}{\mathcal{B}(\mathrm{B}^{0}\to\mathrm{D}^{*-}\pi^{+}\pi^{-}\pi^{+})}$	6.5 ± 0.6
			$\frac{\mathcal{B}(B^0_s \rightarrow D^s K^+ \pi^- \pi^+)}{\mathcal{B}(B^0_s \rightarrow D^s \pi^+ \pi^- \pi^+)}$	5.2 ± 1.3

• The ratios of branching fractions agree well with theory and previous experiments

Study of B_c^+ decays to charmonia and multihadron final states

LHCb-PAPER-2022-025 in preparation

Study of the $B_c^+ \rightarrow \psi 5h$

LHCb-PAPER-2022-025 in preparation

- $B_c^+ \rightarrow J/\psi K^+ K^- \pi^+ \pi^+ \pi^-$ is first observed
- First evidence of $B_c^+ \rightarrow J/\psi 4\pi^+ 3\pi^-$ is obtained with significance of $4.7\sigma_{B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-}$

Summary

- Lots of new particles and excited states have been discovered at LHCb!
- Observation of the decay $\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$
 - $\mathcal{R}(\Lambda_c^+) \equiv \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu})$ is determined and agree with SM prediction
- Observation of two new excited Ξ_b^0 states decaying to $\Lambda_b^0 K^- \pi^+$
 - New excited Ξ_b^0 states $\Xi_b (6327)^0$ and $\Xi_b (6333)^0$ are consistent with the theoretical predictions of 1D Ξ_b^0 states with $J^P = 3/2^+$ and $5/2^+$
- Study of the B_c^+ decays into charmonia and three light hadrons
 - Serval decay modes of $B_c^{\pm} \rightarrow \psi 3h$ are first observed
- Study of the $B_c^+ \rightarrow \psi 5h$
 - $B_c^+ \rightarrow J/\psi K^+ K^- \pi^+ \pi^+ \pi^-$ is first observed

Thanks for listening

ICHEP2022