$\begin{array}{l} \mbox{Drell-Yan lepton-pair production:} \\ \mbox{q_T resummation at N^3LL accuracy} \\ \mbox{and fiducial cross sections at N^3LO in QCD} \end{array}$

Giancarlo Ferrera

Milan University & INFN, Milan

In collaboration with:

Stefano Camarda & Leandro Cieri

Phys.Rev.D 104 (2021) 11, L111503, e-Print:2103.04974 Eur.Phys.J.C 82 (2022) 6, 575, e-Print: 2111.14509

ICHEP – Bologna – July 7th 2022

Motivations

Vector boson production is a benchmark process in hadron collider physics.

- Constraints of parton densities (PDFs).
- α_{S} determination \rightarrow see S. Camarda talk.
- *W*-boson mass (M_W) and electroweak (EW) parameters determination.
- Beyond the Standard Model analyses.
- Perturbative QCD studies.

The above reasons and precise experimental data demands for accurate theoretical predictions \Rightarrow computation of higher-order QCD corrections.

 $lpha_{S}(Q) \sim 1/(eta_0 \ln Q^2/\Lambda_{QCD}^2) \sim 0.1$ (for $Q \sim m_Z$).

Factorization theorem

$$\boldsymbol{\sigma} = \sum_{a,b} f_{a}(M^{2}) \otimes f_{b}(M^{2}) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\boldsymbol{\alpha}_{S}) + \boldsymbol{\mathcal{O}}\left(\frac{\Lambda}{M}\right)$$

- Perturbation theory at leading order (LO): $\hat{\sigma}(\alpha_{\rm S})=\hat{\sigma}^{(0)}$
- LO result: only order of magnitude estimate. NLO: first reliable estimate. NNLO & beyond: precise prediction & robust uncertainty.
- Higher-order calculations not an easy task due to infrared (IR) singularities (impossible direct use of numerical techniques).

 $lpha_S(Q) \sim 1/(eta_0 \ln Q^2/\Lambda_{QCD}^2) \sim 0.1 \ (ext{for } Q \sim m_Z).$

Factorization theorem

$$\boldsymbol{\sigma} = \sum_{a,b} f_{a}(M^{2}) \otimes f_{b}(M^{2}) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\boldsymbol{\alpha}_{S}) + \boldsymbol{\mathcal{O}}\left(\frac{\Lambda}{M}\right)$$

- Perturbation theory at next order (NLO): $\hat{\sigma}(\alpha_{\rm S}) = \hat{\sigma}^{(0)} + \alpha_{\rm S} \hat{\sigma}^{(1)}$
- LO result: only order of magnitude estimate. NLO: first reliable estimate.

NNLO & beyond: precise prediction & robust uncertainty.

 Higher-order calculations not an easy task due to infrared (IR) singularities (impossible direct use of numerical techniques).

• Factorization theorem

$$\boldsymbol{\sigma} = \sum_{a,b} f_{a}(M^{2}) \otimes f_{b}(M^{2}) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\boldsymbol{\alpha}_{S}) + \boldsymbol{\mathcal{O}}\left(\frac{\Lambda}{M}\right)$$

- Perturbation theory at NNLO & beyond: $\hat{\sigma}(\alpha_{\rm S}) = \hat{\sigma}^{(0)} + \alpha_{\rm S} \hat{\sigma}^{(1)} + \alpha_{\rm S}^2 \hat{\sigma}^{(2)} + \cdots$
- LO result: only order of magnitude estimate. NLO: first reliable estimate. NNLO & beyond: precise prediction & robust uncertainty.
- Higher-order calculations not an easy task due to infrared (IR) singularities (impossible direct use of numerical techniques).

• Factorization theorem

$$\boldsymbol{\sigma} = \sum_{a,b} f_a(M^2) \otimes f_b(M^2) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\boldsymbol{\alpha}_{S}) + \boldsymbol{\mathcal{O}}\left(\frac{\Lambda}{M}\right)$$

- Perturbation theory at NNLO & beyond: $\hat{\sigma}(\alpha_{\rm S}) = \hat{\sigma}^{(0)} + \alpha_{\rm S} \hat{\sigma}^{(1)} + \alpha_{\rm S}^2 \hat{\sigma}^{(2)} + \cdots$
- LO result: only order of magnitude estimate. NLO: first reliable estimate. NNLO & beyond: precise prediction & robust uncertainty.
- Higher-order calculations not an easy task due to infrared (IR) singularities (impossible direct use of numerical techniques).

Fixed-order perturbative expansion reliable only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \sim 1 + \alpha_{S} \bigg[c_{12}L_{q_{T}}^{2} + c_{11}L_{q_{T}} + \cdots \bigg] \\ + \alpha_{S}^{2} \bigg[c_{24}L_{q_{T}}^{4} + \cdots + c_{21}L_{q_{T}} + \cdots \bigg] + \mathcal{O}(\alpha_{S}^{3})$$

with $\alpha_S^n L_{q_T}^m \equiv \alpha_S^n \log^m (M^2/q_T^2) \gg 1$.

Resummation of logarithmic corrections mandatory.

Drell–Yan q_T distribution

$$\begin{split} \mathsf{h}_1(\mathsf{p}_1) + \mathsf{h}_2(\mathsf{p}_2) &\to \mathsf{V} + \mathsf{X} \to \ell_1 + \ell_2 + \mathsf{X} \\ \text{where} \quad \mathsf{V} = \mathsf{Z}^0 / \gamma^*, \mathsf{W}^{\pm} \end{split}$$

QCD factorization formula:

$$\frac{d\sigma}{d^2\mathbf{q_T}\,dM^2\,dy\,d\Omega} = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2\,f_{a/h_1}(x_1,\mu_F^2)\,f_{b/h_2}(x_2,\mu_F^2)\,\frac{d\hat{\sigma}_{ab}}{d^2\mathbf{q_T}\,dM^2d\hat{y}d\Omega}(\hat{s};\alpha_S,\mu_R^2,\mu_F^2).$$

Fixed-order perturbative expansion reliable

only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \sim 1 + \alpha_{S} \left[c_{12} \mathcal{L}_{q_{T}}^{2} + c_{11} \mathcal{L}_{q_{T}} + \cdots \right] + \alpha_{S}^{2} \left[c_{24} \mathcal{L}_{q_{T}}^{4} + \cdots + c_{21} \mathcal{L}_{q_{T}} + \cdots \right] + \mathcal{O}(\alpha_{S}^{3})$$

with $\alpha_S^n L_{q_T}^m \equiv \alpha_S^n \log^m (M^2/q_T^2) \gg 1$.

Resummation of logarithmic corrections mandatory.

$$\frac{d\hat{\sigma}}{d^2\mathbf{q_T}\,dM^2\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(\text{res})}\right] + \left[d\hat{\sigma}^{(\text{fin})}\right];$$

$$\int dq_T^2 \frac{d\hat{\sigma}^{(res)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} \sum \alpha_S^n \log^m \frac{M^2}{Q_T^2}$$
$$\int dq_T^2 \frac{d\hat{\sigma}^{(fn)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 b}{4\pi^2} e^{i b \cdot \mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

 $\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{\mathcal{L}})\right\}$

with $\widetilde{L} \equiv \log(Q^2 b^2 + 1)$ $(Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

 $\mathsf{LL} \; (\sim \alpha_{S}^{n} \widetilde{L}^{n+1}): \; g^{(1)}, \; (\hat{\sigma}^{(0)}); \; \; \mathsf{NLL} \; (\sim \alpha_{S}^{n} \widetilde{L}^{n}): \; g^{(2)}, \; \mathcal{H}^{(1)}; \; \; \mathsf{NNLL} \; (\sim \alpha_{S}^{n} \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_{S}^{n} \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_{S}^{n} \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_{S}^{n} \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_{S}^{n} \widetilde{L}^{n-1}): \; \mathsf{LL} \; (\sim \alpha_{$

Resummed result at small q_T matched with fixed-order "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N³LL+N³LO in QCD

$$\frac{d\hat{\sigma}}{d^2\mathbf{q}_{\mathsf{T}}\,dM^2\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \begin{array}{c} \int dq_T^2 \frac{d\hat{\sigma}^{(res)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} \sum \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\ \int dq_T^2 \frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} 0 \end{array}$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 b}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

 $\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$

with $\widetilde{L} \equiv \log(Q^2 b^2 + 1)$ $(Q \sim M \text{ is the resummation scale})$

 $\mathcal{G}(\alpha_{S},\tilde{L}) = \tilde{L}g^{(1)}(\alpha_{S}\tilde{L}) + g^{(2)}(\alpha_{S}\tilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\tilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

LL $(\sim \alpha_S^n \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_S^n \widetilde{L}^n)$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_S^n \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

Resummed result at small q_T matched with fixed-order "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N³LL+N³LO in QCD

$$\frac{d\hat{\sigma}}{d^2\mathbf{q}_{\mathsf{T}}\,dM^2\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \begin{array}{c} \int dq_T^2 \frac{d\hat{\sigma}^{(res)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} \sum \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\ \int dq_T^2 \frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} 0 \end{array}$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 b}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

 $\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

LL $(\sim \alpha_S^n \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_S^n \widetilde{L}^n)$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_S^n \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

$$\frac{d\hat{\sigma}}{d^2\mathbf{q}_{\mathsf{T}}\,dM^2\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \begin{array}{c} \int dq_T^2 \frac{d\hat{\sigma}^{(res)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} \sum \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\ \int dq_T^2 \frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} 0 \end{array}$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 b}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

 $\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\tilde{L}) = \tilde{L}g^{(1)}(\alpha_{S}\tilde{L}) + g^{(2)}(\alpha_{S}\tilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\tilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

 $\mathsf{LL} \ (\sim \alpha_S^n \widetilde{L}^{n+1}): \ g^{(1)}, \ (\widehat{\sigma}^{(0)}); \ \ \mathsf{NLL} \ (\sim \alpha_S^n \widetilde{L}^n): \ g^{(2)}, \ \mathcal{H}^{(1)}; \ \ \mathsf{NNLL} \ (\sim \alpha_S^n \widetilde{L}^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$

$$\frac{d\hat{\sigma}}{d^2\mathbf{q}_{\mathsf{T}}\,dM^2\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \begin{array}{c} \int dq_T^2 \frac{d\hat{\sigma}^{(res)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} \sum \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\ \int dq_T^2 \frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} 0 \end{array}$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 b}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

 $\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

 $\mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n+1}): \; g^{(1)}, \; (\widehat{\sigma}^{(0)}); \; \; \mathsf{NLL} \; (\sim \alpha_S^n \widetilde{L}^n): \; g^{(2)}, \; \mathcal{H}^{(1)}; \; \; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; \mathsf{LL$

$$\frac{d\hat{\sigma}}{d^2\mathbf{q}_{\mathsf{T}}\,dM^2\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \begin{array}{c} \int dq_T^2 \frac{d\hat{\sigma}^{(res)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} \sum \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\ \int dq_T^2 \frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} 0 \end{array}$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 b}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

 $\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

 $\mathsf{LL} \ (\sim \alpha_S^n \widetilde{L}^{n+1}): \ g^{(1)}, \ (\hat{\sigma}^{(0)}); \ \ \mathsf{NLL} \ (\sim \alpha_S^n \widetilde{L}^n): \ g^{(2)}, \ \mathcal{H}^{(1)}; \ \ \mathsf{NNLL} \ (\sim \alpha_S^n \widetilde{L}^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{\mathsf{T}}\,dM^{2}\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(\text{res})}\right] + \left[d\hat{\sigma}^{(\text{fin})}\right]; \qquad \begin{array}{c} \int dq_{\mathsf{T}}^{2}\frac{d\hat{\sigma}^{(\text{res})}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}}\to 0}{\sim} \sum \alpha_{\mathsf{S}}^{n}\log^{m}\frac{M^{2}}{Q_{\mathsf{T}}^{2}}\\ \int dq_{\mathsf{T}}^{2}\frac{d\hat{\sigma}^{(\text{fin})}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}}\to 0}{\sim} 0 \end{array}$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 b}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

 $\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

$$\mathcal{G}(\alpha_{S},\tilde{L}) = \tilde{L}g^{(1)}(\alpha_{S}\tilde{L}) + g^{(2)}(\alpha_{S}\tilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\tilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$

 $\mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n+1}): \; g^{(1)}, \; (\hat{\sigma}^{(0)}); \; \; \mathsf{NLL} \; (\sim \alpha_S^n \widetilde{L}^n): \; g^{(2)}, \; \mathcal{H}^{(1)}; \; \; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(3)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; \mathsf{LL} \; (\sim \alpha_S^n$

Resummed result at small q_T matched with fixed-order "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N³LL+N³LO in QCD

q_T recoil and lepton angular distribution

 $\bullet\,$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{\mathrm{T}}/M; M^2, \Omega) = F(0/M; M^2, \Omega) + \mathcal{O}(\mathbf{q}_{\mathrm{T}}^2/M^2) \ ,$$

- After matching between *resummed* and *finite* component the $O(q_T^2/M^2)$ ambiguity starts at $O(\alpha_S^3)$ ($O(\alpha_S^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity *completely cancel*.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini ('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins-Soper rest frame.

q_T recoil and lepton angular distribution

 ${\ensuremath{\bullet}}$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{\mathsf{T}}/M;M^2,\Omega) = F(0/M;M^2,\Omega) + \mathcal{O}(\mathbf{q}_{\mathsf{T}}^2/M^2) \ ,$$

- After matching between *resummed* and *finite* component the $\mathcal{O}(\mathbf{q}_T^2/M^2)$ ambiguity starts at $\mathcal{O}(\alpha_5^2)$ ($\mathcal{O}(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity *completely cancel*.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins-Soper rest frame.

q_{T} recoil and lepton angular distribution

 ${\ensuremath{\bullet}}$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{\mathsf{T}}/M;M^2,\Omega) = F(0/M;M^2,\Omega) + \mathcal{O}(\mathbf{q}_{\mathsf{T}}^2/M^2) \ ,$$

- After matching between *resummed* and *finite* component the $O(q_T^2/M^2)$ ambiguity starts at $O(\alpha_5^2)$ ($O(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity *completely cancel*.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins–Soper rest frame.

q_T resummation at N³LL+N³LO

• We have implemented the calculation in the publicly available code:

DYTurbo: computes resummed and fixed-order fiducial cross section and related distributions it retains full kinematics of the vector boson and of its leptonic decay products [Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott('20)]

https://dyturbo.hepforge.org.

- q_T resummation performed for Drell–Yan process up to N³LL+N³LO We have included
 - N³LL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-2})$);
 - N³LO corrections (i.e. up to $\mathcal{O}(\alpha_{S}^{3})$) at small q_{T} ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
- Matching with NNLO corrections (i.e. up to O(α³_S)) at large q_T from results in [Gehrmann-DeRidder et al.('16), Bizon et al.('19)];
- Results up to N³LO (i.e. up to O(α³_S)) recovered for the total cross section (from unitarity).

q_T resummation at N³LL+N³LO

• We have implemented the calculation in the publicly available code:

DYTurbo: computes resummed and fixed-order fiducial cross section and related distributions it retains full kinematics of the vector boson and of its leptonic decay products [Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov,Grazzini,Vincter,Schott('20)]

https://dyturbo.hepforge.org.

- q_T resummation performed for Drell–Yan process up to N³LL+N³LO We have included
 - N³LL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-2}))$;
 - N³LO corrections (i.e. up to $\mathcal{O}(\alpha_S^3)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at large q_T ;
- Matching with NNLO corrections (i.e. up to O(α³_S)) at large q_T from results in [Gehrmann-DeRidder et al.('16), Bizon et al.('19)];
- Results up to N³LO (i.e. up to O(α³_S)) recovered for the total cross section (from unitarity).

Z/γ^* production at N³LL+N³LO

[Camarda,Cieri,G.F.('21)]

DYTurbo results. Resummed (left) and matched (right) NLL, NNLL and N³LL bands for $Z/\gamma^* q_T$ spectrum. Lower panel: ratio with respect to the N³LL central value.

Our results recently confirmed by [Chen et al.('22)].

The q_T -subtraction method

[Catani,Grazzini('07)]

$$h_1(p_1)+h_2(p_2) \ \rightarrow \ F(M,q_T)+X$$

• Observation: at LO the q_T of the F is exactly zero.

$$\mathsf{d} oldsymbol{\sigma}^{\mathsf{F}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}|_{\mathsf{q}_{\mathsf{T}}
eq0}=\mathsf{d} oldsymbol{\sigma}^{\mathsf{F}+\mathrm{jets}}_{\mathsf{N}^{\mathsf{n}} ext{-}1\mathsf{LO}}$$
 ,

for $q_T \neq 0$ the NⁿLO IR sing. cancelled with the Nⁿ⁻¹LO subtraction method.

• Key point: treat $q_T = 0$ exploiting universality q_T resummation formalism

$$\mathrm{d} \sigma^{\mathsf{F}}_{\mathsf{N}^\mathsf{n}\mathsf{LO}} = \mathcal{H}^{\mathsf{F}}_{\mathsf{N}^\mathsf{n}\mathsf{LO}} \otimes \mathrm{d} \sigma^{\mathsf{F}}_{\mathsf{LO}} + \left[\mathrm{d} \sigma^{\mathsf{F}+\mathrm{jets}}_{\mathsf{N}^\mathsf{n-1}\mathsf{LO}} - \mathrm{d} \sigma^{\mathsf{CT}}_{\mathsf{N}^\mathsf{n-1}\mathsf{LO}}
ight] \ ,$$

where

$$\mathrm{d}\sigma_{\mathrm{N}^{n}\mathrm{LO}}^{\mathrm{CT}} \xrightarrow{q_{\mathrm{T}} \to 0} \mathrm{d}\sigma_{\mathrm{LO}}^{\mathrm{F}} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_{\mathrm{S}}}{\pi}\right)^{n} \Sigma^{(n,k)} \frac{\mathrm{M}^{2}}{\mathrm{q}_{\mathrm{T}}^{2}} \ln^{k-1} \frac{\mathrm{M}^{2}}{\mathrm{q}_{\mathrm{T}}^{2}} \mathrm{d}^{2} \mathrm{q}_{\mathrm{T}}$$

 $\mathcal{H}^{\mathsf{h}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}(\alpha_{\mathsf{S}})$ contains *multi-loop virtual* corrections via an *universal* factorization formula [Catani,Cieri,de Florian,G.F.,Grazzini('14)].

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N³LL+N³LO in QCD

The q_T -subtraction method

[Catani,Grazzini('07)]

$$h_1(p_1) + h_2(p_2) \rightarrow F(M,q_T) + X$$

• Observation: at LO the q_T of the F is exactly zero.

$$\mathrm{d} \sigma^{\mathsf{F}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}|_{\mathsf{q}_{\mathsf{T}}
eq 0} = \mathrm{d} \sigma^{\mathsf{F}+\mathrm{jets}}_{\mathsf{N}^{\mathsf{n}}\cdot\mathsf{LO}}$$
 ,

for $q_T \neq 0$ the NⁿLO IR sing. cancelled with the Nⁿ⁻¹LO subtraction method.

• Key point: treat $q_T = 0$ exploiting universality q_T resummation formalism $d\sigma_{m_{1,0}}^{F} = \mathcal{H}_{m_{2,0}}^{F} \otimes d\sigma_{r_{0}}^{F} + \left[d\sigma_{r_{1}}^{F+jets} - d\sigma_{m_{1}}^{CT} \right]$

where

$$\mathrm{d}\sigma_{\mathrm{N}^{n}\mathrm{LO}}^{\mathrm{CT}} \xrightarrow{q_{\mathrm{T}} \rightarrow 0} \mathrm{d}\sigma_{\mathrm{LO}}^{\mathrm{F}} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_{\mathrm{S}}}{\pi}\right)^{n} \Sigma^{(n,k)} \frac{\mathrm{M}^{2}}{\mathrm{q}_{\mathrm{T}}^{2}} \ln^{k-1} \frac{\mathrm{M}^{2}}{\mathrm{q}_{\mathrm{T}}^{2}} \mathrm{d}^{2} \mathrm{q}_{\mathrm{T}}$$

 $\mathcal{H}^{\mathsf{h}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}(\alpha_{\mathsf{S}})$ contains *multi-loop virtual* corrections via an *universal* factorization formula [Catani,Cieri,de Florian,G.F.,Grazzini('14)].

Giancarlo Ferrera – Milan University & INFN Drell-Yan production at N^3LL+N^3LO in QCD

The q_T -subtraction method

[Catani,Grazzini('07)]

$$h_1(p_1) + h_2(p_2) \rightarrow F(M,q_T) + X$$

• Observation: at LO the q_T of the F is exactly zero.

$$\mathrm{d} oldsymbol{\sigma}^{\mathsf{F}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}|_{\mathtt{q}_{\mathsf{T}}
eq 0} = \mathrm{d} oldsymbol{\sigma}^{\mathsf{F}+\mathrm{jets}}_{\mathsf{N}^{\mathsf{n}}\cdot\mathsf{LO}}$$
 ,

for $q_T \neq 0$ the $N^n LO$ IR sing. cancelled with the $N^{n-1}LO$ subtraction method.

• Key point: treat $q_T = 0$ exploiting universality q_T resummation formalism

$$\mathrm{d}\sigma^{F}_{N^{n}LO} = \boldsymbol{\mathcal{H}}^{F}_{N^{n}LO} \otimes \mathrm{d}\sigma^{F}_{LO} + \left[\mathrm{d}\sigma^{F+jets}_{N^{n-1}LO} - \mathrm{d}\sigma^{CT}_{N^{n-1}LO}\right] \ , \label{eq:delta_nonlinear}$$

where

$$d\sigma^{CT}_{N^nLO} \quad \stackrel{q_T \to 0}{\longrightarrow} \quad d\sigma^F_{LO} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_S}{\pi}\right)^n \Sigma^{(n,k)} \frac{M^2}{q_T^2} \ln^{k-1} \frac{M^2}{q_T^2} \, d^2q_T$$

 $\mathcal{H}_{N^nLO}^F(\alpha_S)$ contains *multi-loop virtual* corrections via an *universal* factorization formula [Catani,Cieri,deFlorian,G.F.,Grazzini('14)].

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N³LL+N³LO in QCD

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T} > q_{T}^{cut}}^{F+jets} - d\sigma_{q_{T} > q_{T}^{cut}}^{CT} \right] + \mathcal{O}\left((q_{T}^{cut}/M)^{p} \right)$$

- $d\sigma^{F+\text{jets}}$ and $d\sigma^{CT}$ are *separately* divergent, their sum is finite. A lower limit $q_T > q_T^{cut}$ is necessary with a power correction ambiguity, typically (standard fiducial cuts) linear $\mathcal{O}\left((q_T^{cut}/M)\right)$ [Alekhin et al.('21)]..
- The limit $q_T^{cut} \rightarrow 0$ leads to large cancellations and numerical uncertainties.
- Key point: "Fiducial" power corrections (FPC) absent including with

$$d\sigma^{FPC} = \left[d\widetilde{\sigma}_{q_T < q_T^{cut}}^{CT} - d\sigma_{q_T < q_T^{cut}}^{CT} \right]$$

- dσ^{FPC} is universal and IR finite and can be treated as a local subtraction: integration for q_T < q_T^{cut} extended at arbitrary small q_T (e.g. q_T/M ~ 10⁻⁶ GeV)
- ("Recoil") q_T subtraction implemented in DYTurbo.
- Equivalent methods proposed by [Ebert et al.('20), Buonocore et al.('21)].

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T}}^{F+\text{jets}} - d\sigma_{q_{T}}^{CT} \right] + \mathcal{O}\left((q_{T}^{cut}/M)^{p} \right)$$

- $d\sigma^{F+\text{jets}}$ and $d\sigma^{CT}$ are *separately* divergent, their sum is finite. A lower limit $q_T > q_T^{cut}$ is necessary with a power correction ambiguity, typically (standard fiducial cuts) linear $\mathcal{O}\left((q_T^{cut}/M)\right)$ [Alekhin et al.('21)]..
- The limit $q_T^{cut} \rightarrow 0$ leads to large cancellations and numerical uncertainties.
- Key point: "Fiducial" power corrections (FPC) absent including with

$$d\sigma^{FPC} = \left[d\widetilde{\sigma}_{q_T < q_T^{cut}}^{CT} - d\sigma_{q_T < q_T^{cut}}^{CT} \right]$$

- dσ^{FPC} is universal and IR finite and can be treated as a local subtraction: integration for q_T < q_T^{cut} extended at arbitrary small q_T (e.g. q_T/M ~ 10⁻⁶ GeV)
- ("Recoil") q_T subtraction implemented in DYTurbo.
- Equivalent methods proposed by [Ebert et al.('20), Buonocore et al.('21)].

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T} > q_{T}^{cut}}^{F+\text{jets}} - d\sigma_{q_{T} > q_{T}^{cut}}^{CT} \right] + \int_{cuts} d\sigma^{FPC} + \mathcal{O}((q_{T}^{cut}/M)^{2})$$

- $d\sigma^{F+\text{jets}}$ and $d\sigma^{CT}$ are *separately* divergent, their sum is finite. A lower limit $q_T > q_T^{cut}$ is necessary with a power correction ambiguity, typically (standard fiducial cuts) linear $\mathcal{O}\left(\left(q_T^{cut}/M\right)\right)$ [Alekhin et al.('21)]..
- The limit $q_T^{cut} \rightarrow 0$ leads to large cancellations and numerical uncertainties.
- Key point: "Fiducial" power corrections (FPC) absent including with

$$d\sigma^{FPC} = \left[d\widetilde{\sigma}_{q_T < q_T^{cut}}^{CT} - d\sigma_{q_T < q_T^{cut}}^{CT} \right]$$

- dσ^{FPC} is universal and IR finite and can be treated as a local subtraction: integration for q_T < q_T^{cut} extended at arbitrary small q_T (e.g. q_T/M ~ 10⁻⁶ GeV)
- ("Recoil") q_T subtraction implemented in DYTurbo.
- Equivalent methods proposed by [Ebert et al.('20), Buonocore et al.('21)].

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T} > q_{T}^{cut}}^{F+jets} - d\sigma_{q_{T} > q_{T}^{cut}}^{CT} \right] + \int_{cuts} d\sigma^{FPC} + \mathcal{O}\left((q_{T}^{cut}/M)^{2} \right)$$

- $d\sigma^{F+\text{jets}}$ and $d\sigma^{CT}$ are *separately* divergent, their sum is finite. A lower limit $q_T > q_T^{cut}$ is necessary with a power correction ambiguity, typically (standard fiducial cuts) linear $\mathcal{O}\left(\left(q_T^{cut}/M\right)\right)$ [Alekhin et al.('21)]..
- The limit $q_T^{cut} \rightarrow 0$ leads to large cancellations and numerical uncertainties.
- Key point: "Fiducial" power corrections (FPC) absent including with

$$d\sigma^{FPC} = \left[d\widetilde{\sigma}_{q_T < q_T^{cut}}^{CT} - d\sigma_{q_T < q_T^{cut}}^{CT} \right]$$

- dσ^{FPC} is universal and IR finite and can be treated as a local subtraction: integration for q_T < q_T^{cut} extended at arbitrary small q_T (e.g. q_T/M ~ 10⁻⁶ GeV)
- ("Recoil") q_T subtraction implemented in DYTurbo.
- Equivalent methods proposed by [Ebert et al.('20), Buonocore et al.('21)].

Fiducial power corrections at NLO

 Z/γ^* production and decay at the LHC (13 TeV). CUTS on leptons: $p_T > 25$ GeV, $|\eta| < 2.5$, $66 < M_{ll} < 116$ GeV, $q_T < 100$ GeV.

NLO results with the q_T subtraction method (blue squared points) and q_T subtraction method without FPC (red circled points) at various values of q_T^{cut} , and with a local subtraction method (black line).

Fiducial power corrections at NNLO

 Z/γ^* production and decay at the LHC (13 TeV). CUTS on leptons: $p_T > 25$ GeV, $|\eta| < 2.5$, $66 < M_{ll} < 116$ GeV, $q_T < 100$ GeV.

NNLO results with the q_T subtraction method (blue squared points) and q_T subtraction method without FPC (red circled points) at various values of q_T^{cut} , and with a local subtraction method (black line).

Fiducial power corrections at N³LO

 Z/γ^* production and decay at the LHC (13 TeV). CUTS on leptons: $p_T > 25$ GeV, $|\eta| < 2.5, 66 < M_{ll} < 116$ GeV, $q_T < 100$ GeV.

N³LO results with the q_T subtraction method (blue squared points) and q_T subtraction method without FPC (red circled points) at various values of q_T^{cut} .

Modelling W and Z production for M_W determination

Theoretical predictions encoded in DYTurbo used for simulate W and Z boson events.

Z production at the LHC [LHCb Coll. ('22)]. LHCb data and Z q_T distribution for the different candidate models compared with LHCb data.

Combined QED and QCD q_T resummation for Z and W prod.

[Cieri,G.F.,Sborlini ('18)] [Autieri,Cieri,G.F.,Sborlini (in preparation)]

Z qT spectrum at the LHC. NNLL+NNLO QCD results combined with the LL (red dashed) and NLL+NLO (blue solid) QED effects together with the corresponding QED uncertainty bands. Ratio of the (normalized) W and $Z q_T$ distrubution: NNLL+NNLO QCD results (black) combined with LL QED and NLL+NLO EW.

Conclusions

- To fully exploit the information contained in the experimental data, and to increase the LHC discovery power, precise theoretical predictions are necessary ⇒ computation of higher-order pQCD corrections.
- Discussed formalisms necessary to perform fixed-order and q_T resummed predictions up to N³LL+N³LO and presented results for Drell-Yan production at the LHC.
- Presented a method to remove linear fiducial power corrections within the q_T -subtraction formalism.
- Computations encoded in the fast and numerically precise publicly available code DYTurbo:

https://dyturbo.hepforge.org

Back up slides

Giancarlo Ferrera – Milan University & INFN Drell-Yan production at N^3LL+N^3LO in QCD

Fiducial power corrections up to N³LO

- Flip sign of the FPC with order. Alternating-sign "unphysical" factorial growth of the FO expansion due to symmetric cuts [Salam,Slade('21)].
- Unphysical behaviour can be removed within resummed perturbative predictions. *However* the goal of having precise FO calculations is very relevant.
- No reduction of FPC with higher orders. At N³LO with $q_T^{cut} = 0.05 \text{ GeV} 0.4\%$ (+0.3% from α_s^2 and a -0.7% α_s^3).
- Our method is crucial when *local* calculations are not available or when large numerical uncertainties are associated to the $q_T \rightarrow 0$ limit (e.g. at N^3LO).
Combining QED and QCD q_T resummation

LHC measurements for DY process sensitive to pure QED and mixed QCD-QED effects.

Combining QED and QCD q_T resummation [Cieri,G.F.,Sborlini('18)]

We start considering QED contributions to the q_T spectrum in the case of colourless and **neutral** high mass systems, e.g. on-shell Z boson production

$$h_1 + h_2 \rightarrow Z^0 + X$$

In the impact parameter and Mellin spaces resummed partonic cross section reads:

 $\mathcal{W}_{N}(b,M) = \hat{\sigma}^{(0)} \mathcal{H}'_{N}(\alpha_{5},\alpha) \times \exp\left\{\mathcal{G}'_{N}(\alpha_{5},\alpha,L)\right\}$

$$\mathcal{G}'(\alpha_{5},\alpha,L) = \mathcal{G}(\alpha_{5},L) + Lg'^{(1)}(\alpha L) + g'^{(2)}(\alpha L) + \sum_{n=3}^{\infty} \left(\frac{\alpha}{\pi}\right)^{n-2} g'^{(n)}(\alpha L)$$

+
$$g'^{(1,1)}(\alpha_{\mathsf{S}}\mathsf{L},\alpha\mathsf{L})$$
 + $\sum_{\substack{n,m=1\\n+m\neq 2}}^{\infty} \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{n-1} \left(\frac{\alpha}{\pi}\right)^{m-1} g_{\mathsf{N}}'^{(n,m)}(\alpha_{\mathsf{S}}\mathsf{L},\alpha\mathsf{L})$

$$\mathcal{H}'(\alpha_{\mathcal{S}}, \alpha) \quad = \quad \mathcal{H}(\alpha_{\mathcal{S}}) + \ \frac{\alpha}{\pi} \mathcal{H}'^{(1)} + \sum_{n=2}^{\infty} \left(\frac{\alpha}{\pi}\right)^n \ \mathcal{H}'^{(n)}_N \ + \ \sum_{n,m=1}^{\infty} \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^n \left(\frac{\alpha}{\pi}\right)^m \ \mathcal{H}'^{F(n,m)}_N$$

LL QED (
$$\sim \alpha^n L^{n+1}$$
): $g'^{(1)}$; NLL QED ($\sim \alpha^n L^n$): $g'^{(2)}$, $\mathcal{H}'^{(1)}$;
LL mixed QCD-QED ($\sim \alpha_s^n \alpha^n L^{2n}$): $g'^{(1,1)}$;

The LL and NLL QED functions $g'^{(1)}$ and $g'^{(2)}$ has the same functional form of the QCD ones:

$$\begin{split} \mathbf{g}^{\prime(1)}(\alpha L) &= \frac{A_{q}^{\prime(1)}}{\beta_{0}^{\prime}} \frac{\lambda^{\prime} + \ln(1 - \lambda^{\prime})}{\lambda^{\prime}} \ , \\ \mathbf{g}_{N}^{\prime(2)}(\alpha L) &= \frac{\widetilde{B}_{q,N}^{\prime(1)}}{\beta_{0}^{\prime}} \ln(1 - \lambda^{\prime}) - \frac{A_{q}^{\prime(2)}}{\beta_{0}^{\prime 2}} \left(\frac{\lambda^{\prime}}{1 - \lambda^{\prime}} + \ln(1 - \lambda^{\prime})\right) \\ &+ \frac{A_{q}^{\prime(1)}\beta_{1}^{\prime}}{\beta_{0}^{\prime 3}} \left(\frac{1}{2}\ln^{2}(1 - \lambda^{\prime}) + \frac{\ln(1 - \lambda^{\prime})}{1 - \lambda^{\prime}} + \frac{\lambda^{\prime}}{1 - \lambda^{\prime}}\right) \ , \end{split}$$

the novel LL mixed QCD-QED function reads:

$$g'^{(1,1)}(\alpha_{S}L,\alpha L) = \frac{A_{q}^{(1)}\beta_{0,1}}{\beta_{0}^{2}\beta_{0}'} h(\lambda,\lambda') + \frac{A_{q}'^{(1)}\beta_{0,1}'}{\beta_{0}'^{2}\beta_{0}} h(\lambda',\lambda) ,$$

$$\begin{split} \mathsf{h}(\lambda,\lambda') &= -\frac{\lambda'}{\lambda-\lambda'} \ln(1-\lambda) + \ln(1-\lambda') \left[\frac{\lambda(1-\lambda')}{(1-\lambda)(\lambda-\lambda')} + \ln\left(\frac{-\lambda'(1-\lambda)}{\lambda-\lambda'}\right) \right] \\ &- \operatorname{Li}_2\left(\frac{\lambda}{\lambda-\lambda'}\right) + \operatorname{Li}_2\left(\frac{\lambda(1-\lambda')}{\lambda-\lambda'}\right), \end{split}$$

where $\lambda = \frac{1}{\pi}\beta_0 \alpha_S L$, $\lambda' = \frac{1}{\pi}\beta'_0 \alpha L$, and β_0 , β'_0 , β'_1 , $\beta_{0,1}$, $\beta'_{0,1}$ are the coefficients of the QCD and QED β functions.

Abelianization procedure

$$\frac{d\ln\alpha_{\mathcal{S}}(\mu^2)}{d\ln\mu^2} = \beta(\alpha_{\mathcal{S}}(\mu^2), \alpha(\mu^2)) = -\sum_{n=0}^{\infty} \beta_n \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{n+1} - \sum_{n,m+1=0}^{\infty} \beta_{n,m} \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{n+1} \left(\frac{\alpha}{\pi}\right)^m,$$

$$\frac{d\ln\alpha(\mu^2)}{d\ln\mu^2} = \beta'(\alpha(\mu^2), \alpha_S(\mu^2)) = -\sum_{n=0}^{\infty} \beta'_n \left(\frac{\alpha}{\pi}\right)^{n+1} - \sum_{n,m+1=0}^{\infty} \beta'_{n,m} \left(\frac{\alpha}{\pi}\right)^{n+1} \left(\frac{\alpha_S}{\pi}\right)^m.$$

Novel QED coefficients obtained through an Abelianization algorithm

$$A_q^{\prime(1)} = e_q^2 \,, \qquad A_q^{\prime(2)} = - {5 \over 9} \, e_q^2 \, N^{(2)} \qquad \widetilde{B}_{q,N}^{\prime(1)} = B_q^{\prime(1)} + 2 \gamma_{qq,N}^{\prime(1)} \,,$$

with
$$B_q^{\prime(1)} = -\frac{3}{2} e_q^2$$
, $N^{(n)} = N_c \sum_{q=1}^{n_f} e_q^n + \sum_{l=1}^{n_l} e_l^n$,

$$\gamma_{qq,N}^{\prime(1)} = e_q^2 \left(\frac{3}{4} + \frac{1}{2N(N+1)} - \gamma_E - \psi_0(N+1)\right), \quad \gamma_{q\gamma,N}^{\prime(1)} = \frac{3}{2} e_q^2 \frac{N^2 + N + 2}{N(N+1)(N+2)}.$$

$$\mathcal{H}_{q\bar{q}\leftarrow q\bar{q},N}^{\prime F\,(1)} = \frac{e_q^2}{2} \,\left(\frac{2}{N(N+1)} - 8 + \pi^2\right) \,, \quad \mathcal{H}_{q\bar{q}\leftarrow \gamma q,N}^{\prime F\,(1)} = \frac{3\,e_q^2}{(N+1)(N+2)} \,.$$

Resummed result *matched* with corresponding finite $\mathcal{O}(\alpha)$ term.

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N³LL+N³LO in QCD

Combined QED and QCD q_{T} resummation for Z production at

1.02 1/2<\u00edu/M_l<2 1.01 1.00 o (NNLL+NNLO) 0.99 0.9 1.02 RATIO 1 1.0 1.00 0.99 0.98 10 20 30 ٥ q. (GeV)

Z qT spectrum at the LHC. NNLL+NNLO QCD results combined with the LL (red dashed) and NLL+NLO (blue solid) QED effects together with the corresponding QED uncertainty bands. Ratio of the resummation (upper panel) and renormalization (lower panel) QED scale-dependent results with respect to the central value NNLL+NNLO QCD result.

Z qT spectrum at the LHC. NNLL+NNLO QCD results combined with the LL (red dashed) and NLL+NLO (blue solid) QED effects together with the corresponding QED uncertainty bands.

Ratio of the resummation (upper panel) and renormalization (lower panel) QED scale-dependent results with respect to the central value NNLL+NNLO QCD result.

Combining QED and QCD q_T resummation for W production [Cieri,G.F.,Sborlini (in preparation)]

We next consider QED contributions to the q_T spectrum in the case of colourless and **charged** high mass systems, e.g. on-shell W^{\pm} boson production

$$h_1 + h_2 \rightarrow W^{\pm} + X$$

• Initial state QED emissions sensitive to different quark charges $(q\bar{q'} \rightarrow W^{\pm})$:

$$2e_q^2
ightarrow e_q^2 + e_{ar q}^2$$

Final state QED emissions: abelianizion of QCD resummation formula q_T resummation for tt̄ production [Catani,Grazzini,Torre('14)]:

$$\Delta'(b,M) = \exp\left\{-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} D'(\alpha(q^2))\right\}$$

with
$$D'(\alpha) = \sum_{n=1}^{\infty} \left(\frac{\alpha}{\pi}\right)^n D'^{(n)}$$
, and $D'^{(1)} = -\frac{e^2}{2}$

Factor Δ'(b, M) resums soft (non collinear) QED emissions from final state (and from initial-final interference). Effects from D'(α) start to contribute at NLL. Same functional dependence, in terms of g'⁽ⁱ⁾ functions, as the B'(α) term.

Combined QED and QCD q_{T} resummation for W production at the LHC

[S.Rota (degree thesis '18)]

W qT spectrum at the LHC (13 TeV). $O(\alpha)$ fixed-order QED results compared with the asymptotic expansion of the resummed result.

Combined QED and QCD q_{T} resummation for W production at the LHC

[S.Rota (degree thesis '18)]

 $W\ qT$ spectrum at the LHC. NNLL QCD results combined with the NLL QED effects.

Universality in q_T resummation

The resummation formula is invariant under the *resummation scheme* transformations [Catani,deFlorian,Grazzini('01)] (for $h_c(\alpha_S) = 1 + \sum_{n=1}^{\infty} \alpha_S^n h_c^{(n)}$):

$$\begin{array}{lll} H_c^F(\alpha_S) & \to & H_c^F(\alpha_S) \ \left[\ h_c(\alpha_S) \right]^{-1} \ , \\ B_c(\alpha_S) & \to & B_c(\alpha_S) - \beta(\alpha_S) \ \frac{d \ln h_c(\alpha_S)}{d \ln \alpha_S} \ , \\ C_{cb}(z,\alpha_S) & \to & C_{cb}(z,\alpha_S) \ \left[\ h_c(\alpha_S) \right]^{1/2} \ . \end{array}$$

• This implies that H_c^F, S_c (B_c) and C_{cb} not unambiguously computable separately.

- Resummation scheme: define H^F_c (or C_{ab}) for single processes (one for qq̄ → F one for gg → F) and unambiguously determine the process-dependent H^F_c and the universal (process-independent) S_c and C_{ab} for any other process.
- DY/H resummation scheme: H^{DY}_g(α_S) ≡ 1, H^H_g(α_S) ≡ 1. Hard resummation scheme: C⁽ⁿ⁾_{ab}(z) for n ≥ 1 do not contain any δ(1 − z) term (other than plus distributions).
- H^F_c(α_S) = 1 (i.e. h_c(α_S) = H^F_c(α_S)) does not correspond to a resummation scheme (S^F_c and C^F_{ab} would be process dependent, [de Florian, Grazzini('00)]).

Universality in q_{T} resummation

The resummation formula is invariant under the *resummation scheme* transformations [Catani,deFlorian,Grazzini('01)] (for $h_c(\alpha_S) = 1 + \sum_{n=1}^{\infty} \alpha_S^n h_c^{(n)}$):

$$\begin{array}{lll} H_c^F(\alpha_S) & \to & H_c^F(\alpha_S) \ \left[\ h_c(\alpha_S) \ \right]^{-1} \ , \\ B_c(\alpha_S) & \to & B_c(\alpha_S) - \beta(\alpha_S) \ \frac{d \ln h_c(\alpha_S)}{d \ln \alpha_S} \ , \\ C_{cb}(z,\alpha_S) & \to & C_{cb}(z,\alpha_S) \ \left[\ h_c(\alpha_S) \ \right]^{1/2} \ . \end{array}$$

- This implies that H_c^F, S_c (B_c) and C_{cb} not unambiguously computable separately.
- Resummation scheme: define H_c^F (or C_{ab}) for single processes (one for $q\bar{q} \rightarrow F$ one for $gg \rightarrow F$) and unambiguously determine the process-dependent H_c^F and the universal (process-independent) S_c and C_{ab} for any other process.
- DY/H resummation scheme: H^{DY}_g(α_S) ≡ 1, H^H_g(α_S) ≡ 1. Hard resummation scheme: C⁽ⁿ⁾_{ab}(z) for n ≥ 1 do not contain any δ(1 − z) term (other than plus distributions).
- H^F_c(α_S) = 1 (i.e. h_c(α_S) = H^F_c(α_S)) does not correspond to a resummation scheme (S^F_c and C^F_{ab} would be process dependent, [de Florian, Grazzini('00)]).

Universality in q_{T} resummation

The resummation formula is invariant under the *resummation scheme* transformations [Catani,deFlorian,Grazzini('01)] (for $h_c(\alpha_S) = 1 + \sum_{n=1}^{\infty} \alpha_S^n h_c^{(n)}$):

$$\begin{array}{lll} H_c^F(\alpha_S) & \to & H_c^F(\alpha_S) \ [h_c(\alpha_S)]^{-1} \ , \\ B_c(\alpha_S) & \to & B_c(\alpha_S) - \beta(\alpha_S) \ \frac{d \ln h_c(\alpha_S)}{d \ln \alpha_S} \ , \\ C_{cb}(z,\alpha_S) & \to & C_{cb}(z,\alpha_S) \ [h_c(\alpha_S)]^{1/2} \ . \end{array}$$

- This implies that H_c^F, S_c (B_c) and C_{cb} not unambiguously computable separately.
- Resummation scheme: define H_c^F (or C_{ab}) for single processes (one for $q\bar{q} \rightarrow F$ one for $gg \rightarrow F$) and unambiguously determine the process-dependent H_c^F and the universal (process-independent) S_c and C_{ab} for any other process.
- DY/H resummation scheme: H^{DY}_q(α_S) ≡ 1, H^H_g(α_S) ≡ 1. Hard resummation scheme: C⁽ⁿ⁾_{ab}(z) for n ≥ 1 do not contain any δ(1 − z) term (other than plus distributions).
- *H*^F_c(α_S) = 1 (i.e. *h*_c(α_S) = *H*^F_c(α_S)) does not correspond to a resummation scheme (*S*^F_c and *C*^F_{ab} would be process dependent, [de Florian, Grazzini('00)]).

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \qquad \text{renormalized virtual amplitude}$ (UV finite but IR divergent).

 $) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{2\pi}\right)^{n} \tilde{l}_{c}^{(n)}(\epsilon) , \qquad \begin{array}{c} \text{IR subtraction univ}\\ (\text{contain IR } \epsilon\text{-poles ar} \end{array}$

 $\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \tilde{l}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) ,$ Hard factor is directly related to the all-loop virtual amplitude: hard-virtual subtracted amplitude (IR finite).

$$\alpha_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \Omega; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}$$

This formula extended up to N3LL in the case of threshold resummation.

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N^3LL+N^3LO in QCD

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \qquad \text{renormalized virtual amplitude} \quad (\text{UV finite but IR divergent}).$

 $\tilde{I}_{c}(\epsilon, M^{2}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{2\pi}\right)^{n} \tilde{I}_{c}^{(n)}(\epsilon) , \qquad \begin{array}{c} \text{IR subtraction} \\ \text{(contain IR } \epsilon_{\text{-}} \end{array}$

IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

 $\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \tilde{l}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) ,$ Hard factor is directly related to the all-loop virtual amplitude: hard-virtual subtracted amplitude (IR finite).

$$\chi_{5}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \Omega; \alpha_{5}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}},$$

This formula extended up to N3LL in the case of threshold resummation.

Giancarlo Ferrera – Milan University & INFN Drell-Yan production at N^3LL+N^3LO in QCD

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \qquad \text{renormalized virtual amplitude} \quad (\text{UV finite but IR divergent}).$

$$\tilde{l}_c(\epsilon, M^2) = \sum_{n=1}^{\infty} \left(\frac{lpha_S}{2\pi}\right)^n \tilde{l}_c^{(n)}(\epsilon) \,,$$

IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

 $\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \tilde{l}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) ,$ Hard factor is directly related to the all-loop virtual amplitude hard-virtual subtracted amplitude (IR finite).

 $\alpha_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \Omega; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}$

This formula extended up to N3LL in the case of threshold resummation.

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \qquad \text{renormalized virtual amplitude} \quad (\text{UV finite but IR divergent}).$

$$\tilde{I}_c(\epsilon, M^2) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \tilde{I}_c^{(n)}(\epsilon),$$

IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

$$\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1,\hat{p}_2;\{q_i\}) = \left[1 - \tilde{I}_c(\epsilon,M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1,\hat{p}_2;\{q_i\}) \ ,$$

hard-virtual subtracted amplitude (IR finite).

Hard factor is directly related to the all-loop virtual amplitude:

$$\chi_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \Omega; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}},$$

This formula extended up to N3LL in the case of threshold resummation.

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \qquad \text{renormalized virtual amplitude} \quad (\text{UV finite but IR divergent}).$

$$\tilde{l}_{c}(\epsilon, M^{2}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{2\pi}\right)^{n} \tilde{l}_{c}^{(n)}(\epsilon), \qquad \begin{array}{c} \text{IR subtraction universal operators} \\ \text{(contain IR } \epsilon\text{-poles and IR finite terms)} \end{array}$$

 $\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \widetilde{l}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) , \qquad \begin{array}{l} \text{hard-virtual subtracted} \\ \text{amplitude (IR finite).} \end{array}$

$$\alpha_{\mathcal{S}}^{2k}(M^2) H_q^{\mathcal{F}}(x_1p_1, x_2p_2; \Omega; \alpha_{\mathcal{S}}(M^2)) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to\mathcal{F}}(x_1p_1, x_2p_2; \{q_i\})|^2}{|\mathcal{M}_{q\bar{q}\to\mathcal{F}}^{(0)}(x_1p_1, x_2p_2; \{q_i\})|^2} ,$$

This formula extended up to N3LL in the case of threshold resummation.

Giancarlo Ferrera – Milan University & INFN Drell-Yan production at N^3LL+N^3LO in QCD

Soft gluon exponentiation

Sudakov resummation feasible when: dynamics AND kinematics factorize \Rightarrow exponentiation.

 Dynamics factorization: general propriety of QCD matrix element for soft emissions.
 1 n/2

$$dw_n(q_1,\ldots,q_n)\simeq \frac{1}{n!}\prod_{i=1}^{n}dw_i(q_i)$$

• Kinematics factorization: not valid in general. For q_T distribution it holds in the impact parameter space (Fourier transform)

$$\int d^2 \mathbf{q}_{\mathsf{T}} \, \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}}) \, \delta^{(2)} \left(\mathbf{q}_{\mathsf{T}} - \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j} \right) = \exp(-i\mathbf{b} \cdot \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j}) = \prod_{j=1}^n \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}_j}) \, .$$

 Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space: q_T ≪ M ⇔ Mb≫1, log M/q_T≫1 ⇔ log Mb≫1.

Transverse-momentum resummation formula

 $\tilde{F}_{q_f/h}(x, b, M) = \sum_a \int_x^1 \frac{dz}{z} \sqrt{S_q(M, b)} C_{q_f a}(z; \alpha_S(b_0^2/b^2)) f_{a/h}(x/z, b_0^2/b^2)$

Transverse-momentum resummation formula

$$\tilde{F}_{q_f/h}(x, b, M) = \sum_{a} \int_{x}^{1} \frac{dz}{z} \sqrt{S_q(M, b)} C_{q_f a}(z; \alpha_S(b_0^2/b^2)) f_{a/h}(x/z, b_0^2/b^2)$$

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_S)$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale Q ~ M: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_S)$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a *Minimal Prescription* without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale Q ~ M: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor H^F_c(α_S).
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale Q ~ M: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor H^F_c(α_S).
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale Q ~ M: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor H^F_c(α_S).
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a *Minimal Prescription* without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor H^F_c(α_S).
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a *Minimal Prescription* without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

 $\ln(Q^2b^2) \rightarrow \widetilde{L} \equiv \ln(Q^2b^2+1)$

avoids unjustified higher-order contributions in the small-b region.

• recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor H^F_c(α_S).
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

 $\ln\left(\!Q^2 b^2\!\right) \,\rightarrow\, \widetilde{L} \equiv \ln\left(\!Q^2 b^2 + 1\!\right) \,\,\Rightarrow\,\, \exp\left\{\alpha_S^n \widetilde{L}^k\right\}\!\big|_{b=0} = 1$

• avoids unjustified higher-order contributions in the small-b region.

• recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor H^F_c(α_S).
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a *Minimal Prescription* without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

$$\ln(Q^2b^2) \rightarrow \widetilde{L} \equiv \ln(Q^2b^2 + 1) \quad \Rightarrow \quad \exp\left\{\alpha_S^n \widetilde{L}^k\right\}\Big|_{b=0} = 1 \quad \Rightarrow \quad \int_0^\infty dq_T^2 \left(\frac{d\widehat{\sigma}}{dq_T^2}\right) = \widehat{\sigma}^{(tot)};$$

- avoids unjustified higher-order contributions in the small-b region.
- recover exactly the total cross-section (upon integration on q_T)