

LINEAR POWER CORRECTIONS IN COLLIDER PROCESSES

Giovanni Limatola

Università degli Studi di Milano Bicocca and INFN sezione di Milano Bicocca

ICHEP 2022, Bologna, July 7th 2022

Based on JHEP 06 (2021) 018 [2011.14114], JHEP 01 (2022) 093, [2108.08897] Works done in collaboration with Fabrizio Caola, Silvia Ferrario Ravasio, Kirill Melnikov, Paolo Nason, Melih A. Ozcelik

- High precision era for Large Hadron Collider (LHC) physics
- The current absence of New Physics signals requires theoretical computations with high accuracy
- Need an input on Non-Perturbative (NP) (hadronization) corrections, scaling as $\mathcal{O}(\Lambda_{\rm QCD}/Q)^p$, that may easily reach the percent level for theoretical expectations for hardness scales $Q \sim 100 \text{ GeV}$
- Lack of a full general theory for estimating NP corrections for generic collider observables

Renormalons in QCD

• A generic observable in a renormalizable QFT $D[\alpha] = \sum_{n=0}^{\infty} c_n \alpha^{n+1}$ This series diverges at large orders with factorial growth $c_n = a^n n!$

It needs to be truncated at its minimum value $(n_{min} = 1/(|a|\alpha))$

• The ambiguity takes the form
$$\left(\beta(\alpha_s) = -b_0 \alpha_s^2 + \dots, b_0 = \frac{33-2n_f}{12\pi}\right)$$

 $e^{-1/(a\alpha_s(Q))} = e^{\log(\Lambda_{\rm QCD}^2/Q^2)^{b_0/a}} = \left(\frac{\Lambda_{\rm QCD}}{Q}\right)^{2b_0/a} = \left(\frac{\Lambda_{\rm QCD}}{Q}\right)^p$

The factorial growth of the perturbative series is related to power corrections

We talk about Infrared linear renormalons (p = 1), arising from the low momentum region

Large- n_f limit

- NP terms need to be extracted with an all-order computation assuming an infinite number of quarks flavors n_f (Large- n_f limit)
- We consider the Abelian limit of QCD $(n_f \to -\infty)$, decorating each gluon line with fermionic bubbles

$$\frac{-ig^{\mu\nu}}{k^2 + i\eta} \rightarrow \frac{-ig^{\mu\nu}}{k^2 + i\eta} \times \frac{1}{1 + \Pi(k^2 + i\eta, \mu^2, \epsilon) - \Pi_{\rm ct}}$$
$$\Pi(k^2 + i\eta, \mu^2, \epsilon) - \Pi_{\rm ct} = \alpha_s(\mu) \left(\frac{-n_f T_R}{3\pi}\right) \left[\log\left(\frac{|k^2|}{\mu^2}\right) - i\pi\theta(k^2) - \frac{5}{3}\right]$$

• Terms $(\alpha_s n_f)^k$ fully computable for each k

• At the end of the computation one recovers the non-Abelian limit by replacing $n_f \rightarrow \frac{11C_A}{4T_R} - n_l$ (n_l the real number of QCD light flavors)

Large- b_0 approximation

Large- n_f limit

- The insertions of the fermion bubbles can be handled by considering radiative QCD corrections computed with a gluon of mass λ
- $\bullet\,$ The average value of a generic IR-safe observable O is written as

$$\langle O \rangle = \langle O \rangle^{(0)} - \frac{1}{\alpha_s} \int d\lambda \frac{d\langle O \rangle_{\lambda}^{(1)}}{d\lambda} \left[\frac{1}{\pi b_0} \arctan \frac{\pi b_0 \alpha_s}{1 + b_0 \alpha_s \log \lambda^2 / \mu_C^2} \right]$$

Bonoko '08

where

$$\begin{array}{lll} \langle O \rangle^{(0)} & = & \displaystyle \frac{1}{\sigma} \int \mathrm{d}\Phi_B B(\Phi_B) O(\Phi_B) \\ \langle O \rangle^{(1)}_{\lambda} & = & \underbrace{T_V(\lambda) + T_R(\lambda)}_{\text{Virtual and real corrections for a massive gluon}} + \underbrace{T_R^{\Delta}(\lambda)}_{\text{Nason,Seymour('95)}} \end{array}$$

$$T_R^{\Delta}(\lambda) = \frac{1}{\sigma} \frac{3\pi}{\alpha_s T_F} \lambda^2 \int \mathrm{d}\Phi_{q\bar{q}} R_{q\bar{q}}(\lambda) \delta(\lambda^2 - m_{q\bar{q}}^2) \bigg[O(\Phi_{q\bar{q}}) - O(\Phi_{(q\bar{q})}) \bigg]$$

• All the logarithmically divergent terms as $\lambda \to 0$ cancel as O is IR-safe

• A linear term in λ in $\langle O \rangle_{\lambda}^{(1)} \to \mathbb{IR}$ linear renormalon

Large- n_f limit in literature

It provides a reliable framework for estimating renormalon corrections

- Beneke, Braun (1995): looking for power corrections in Drell-Yan total cross section, proving that claims about resummation as probe for linear power corrections were unfounded;
- Nason, Seymour (1995): issues about power corrections in shape variables observables;
- Dasgupta (1999): no linear renormalons in the rapidity distributions of DY pair;
- Ferrario Ravasio, Nason, Oleari (2019): leptonic observables in top production and decay are affected by IR linear renormalons;
- Ferrario Ravasio, GL, Nason (2020): absence of IR linear renormalons in the p_T distribution of a Z boson in hadronic collisions, in the large transverse momentum region, irrespective of rapidity cuts;
- Caola, Ferrario Ravasio, GL, Melnikov, Nason (2021): estimate of leading power corrections affecting Shape Variables in the 3-jet region;
- Caola, Ferrario Ravasio, GL, Melnikov, Nason, Ozcelik (2022): fully analytic approach to estimate leading NP corrections affecting Shape Variables in the 3-jet region (See Melih's talk)

The p_T of the Z

- One of the cleanest and best measured LHC observables
- Sub-percent level precision for normalized distributions measured at LHC (ATLAS and CMS ('15,'19))
- Theoretical uncertainties still at the percent level
- Z + jet computed at NNLO in QCD (Boughezal, Campbell et al. ('16), Gehrmann-De Ridder, Gehrmann et al. ('16), Gehrmann-De Ridder et al ('18)). Current state of the art is NNLO + N³LL with a large effect of resummation for small p_T^Z (Bizon et al. ('19))
- Very important implications for constraining α_s and PDFs at LHC (Boughezal et al. ('17))

The p_T of the Z

- One of the cleanest and best measured LHC observables
- Sub-percent level precision for normalized distributions measured at LHC (ATLAS and CMS ('15,'19))

Motivation

- Given the high precision reached for this observable, it is crucial to look for the presence of IR linear renormalons in the moderately large transverse momentum region!
- Very important implications for constraining α_s and PDFs at LHC (Boughezal et al. ('17))

 \mathbf{r}

The p_T of the Z: a kinematic argument

- The soft radiation pattern is not azimuthally symmetric
- A IR linear renormalon is strictly related to soft emissions

If we model a IR linear renormalon as due to the emission of a soft particle with transverse momentum $\sim \Lambda_{\rm QCD}$, we may assume that it can also affect the p_T^Z by recoil!

The p_T of the Z: working in the Large- n_f limit

• We consider the process $d(p_1)\gamma(p_2) \rightarrow Z(p_3)d(p_4)$ to work in the Large-n_f limit and to preserve the azimuthal color asymmetry ($E_{CM} = 300 \text{ GeV}$)

No numeric evidence of a IR linear renormalon for the transverse momentum of the Z boson!

The p_T of the Z: working in the Large- n_f limit

• We consider the process $d(p_1)\gamma(p_2) \rightarrow Z(p_3)d(p_4)$ to Question Is it possible to provide an analytic argument about the presence (absence) of linear power corrections?

We (Ferrario Ravasio, GL, Nason ('20)) found

$$\frac{\langle O \rangle_{\lambda}^{(1)} \sim \left(\frac{\lambda}{p_T^c}\right)^2 \log\left(\frac{\lambda}{p_T^c}\right)}{\log\left(\frac{\lambda}{p_T^c}\right)}$$

No numeric evidence of a IR linear renormalon for the transverse momentum of the Z boson!

Linear Power Corrections: an analytic argument

Question

Given a process involving the emission/exchange of a gluon with mass λ , under which hypotheses do the linear terms in λ appear/disappear?

- We (Caola, Ferrario Ravasio, GL, Melnikov, Nason ('21)) observed:
 - For processes involving massless particles, virtual corrections cannot give rise to linear power corrections
 - **②** Evaluation of NLO corrections with a gluon with mass λ From collinear configurations we get

$$\int rac{\mathrm{d}^2 ec{k}_\perp}{ec{k}_\perp^2+\lambda^2} f(\eta,\phi)$$

If $f(\eta, \phi) \sim e^{-|\eta|}$ after azimuthal integration (Thrust, *C*-parameter...) we can focus on soft emissions only to extract leading power corrections

3 Real amplitude evaluated at Next-to-Leading term in k (gluon momentum)

Main Result

No linear terms in λ from an inclusive integration over the radiation phase space!

Linear Power Corrections for Shape Variables

- Shape Variables are routinely used to extract reliable values of α_s , from e^+e^- data, thanks to high precision calculations
- Need input on NP (hadronisation) corrections
- Both numeric (Monte Carlo event generator) and analytic approaches for estimating NP corrections
- Analytic NP methods (only valid in the 2-jet limit) give

() $\alpha_s = 0.1135 \pm 0.0010$ [1006.3080] from Thrust

② $\alpha_s = 0.1123 \pm 0.0015$ [1501.04111] from *C*-parameter

- Several standard deviations away from the PDG value: $\alpha_s = 0.1179 \pm 0.0010$
- The usual technique consisting of fitting the NP correction in the 2-jet region, and then extrapolating it in the 3-jet region has been proven to be unrealiable for the C-parameter (Luisoni, Monni, Salam ('20))

It is crucial to evaluate NP corrections in the 3-jet region, where α_s fits are performed!

Linear Power Corrections for Shape Variables

• Looking for linear power corrections for Shape Variables in the 3-jet region for the process $\gamma^*(q) \rightarrow d(p_1)\bar{d}(p_2)\gamma(p_3)$

- NLO corrections performed with a gluon with mass λ , also considering the splitting $g^*(k) \to q(l_1)\bar{q}(l_2)$
- The phase space can be factorized

$$\mathrm{d}\Phi_{3+2}\delta(\lambda^2 - (l_1 + l_2)^2) = \underbrace{\mathrm{d}\Phi_{3+1}}_{\gamma^* \to d\bar{d}\gamma g^*} \times \underbrace{\mathrm{d}\Phi_{\mathrm{split}}}_{g^* \to q\bar{q}} = \underbrace{\mathrm{d}\Phi_3}_{\gamma^* \to d\bar{d}\gamma} \times \mathrm{d}\Phi_{\mathrm{rad}} \times \mathrm{d}\Phi_{\mathrm{split}}$$

• The mapping $\Phi_{3+1}(p'_{i=1,2,3},k) \to (\Phi_3(p_{i=1,2,3}), \Phi_{\rm rad}(k))$ needs to be smooth in k for small k

$$p'^{\mu} = p^{\mu} + K^{\mu}_{\nu}(p)k^{\nu} + \mathcal{O}(k^0)^2$$

Linear Power Corrections for Shape Variables

• For a generic Shape Variable O, vanishing in the 2-jet limit we evaluate the NLO correction

$$\langle O \rangle_{\lambda}^{(1)} = \frac{1}{\sigma_0} \int \mathrm{d}\Phi_3 \left\{ V_{\lambda} O_3 + \int \mathrm{d}\Phi_{\mathrm{rad}} M_{\mu\nu}(k,\lambda) \int \mathrm{d}\Phi_{\mathrm{split}} P_{\mathrm{split}}^{\mu\nu} O_{3+2} \right\}$$

That can be manipulated as

$$\langle O \rangle_{\lambda}^{(1)} = \frac{1}{\sigma_0} \int d\Phi_3 \left\{ \int d\Phi_{\rm rad} M_{\mu\nu}(k,\lambda) \underbrace{\left[\int d\Phi_{\rm split} P_{\rm split}^{\mu\nu} O_{3+2} + O_3 g^{\mu\nu} \right]}_{\rm No \ linear \ terms \ from \ this \ integration!} \right\}$$

• The term in the square bracket is suppressed in the soft limit, so we can use only the leading soft approximation for $M_{\mu\nu}$

The leading power correction can be extracted by computing $\langle O \rangle_{\lambda}^{(1)} - \langle O \rangle_{0}^{(1)}$

NP correction as a Shift in the Shape Variable

 \bullet We consider the cumulative distribution for a generic shape variable O

$$\Sigma(O) = \int_O \mathrm{d}O' \frac{\mathrm{d}\sigma}{\mathrm{d}O'}$$

- Non-Perturbative corrections show up as a shift in the Shape Observable $\Sigma^{\rm NP}(O) \sim \Sigma(O) - \delta O \Sigma^{'}(O) = \Sigma(O) - \delta O \frac{\mathrm{d}\sigma}{\mathrm{d}O}$
- If the NP Correction is due to the emission of a soft gluon, we can write

$$\delta O = \alpha_s \frac{\lambda}{Q} h_O \zeta(O)$$

- $\bullet~h_O$ parametrises the Non-Perturbative correction in the 2-jet region
- $\zeta(O)$ describes the behaviour of the Non-Perturbative correction in the 3-jet region as a function of O

With our method we can easily evaluate the functional form of $\zeta(O)$ in the full phase space!

NP shift in the Shape Variable

• We extended our considerations to the realistic process $\gamma^* \rightarrow d\bar{d}g$

• The three contributions are additive C C (2)

NP shift in the Shape Variable

• We extended our

Result

For $\lambda = 0.1$ GeV and Q = 100 GeV we find $\zeta(c = 3/4) = 0.479(5)$, in excellent agreement with $\zeta_{\rm LMS}(c=3/4)=0.476$ • $\zeta(O) = \frac{C_F - C_A/2}{C_F} \zeta_{q\bar{q}}(O) + \frac{C_A}{C_F} \zeta_{qg}(O)$ 1.6 1.3 λ=2 GeV λ=2 GeV λ-1 GeV 1.4 λ-1 GeV 1.2 λ=0.5 GeV λ=0.5 GeV λ=0.1 GeV λ=0.1 GeV 1.2 1.1 (c) Ð 0.9 0.8 total 0.8 0.6 0.7 total 0.4 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.05 0.1 0.15 0.2 0.25 0.3

Giovanni Limatola — JULY 7TH, 2022

NP shift in the Shape Variable

• We extended our

Result

For $\lambda = 0.1$ GeV and Q = 100 GeV we find $\zeta(c = 3/4) = 0.479(5)$, in excellent agreement with $\zeta_{\text{LMS}}(c = 3/4) = 0.476$

•
$$\zeta(O) = \frac{C_F - C_A/2}{C_F} \zeta_{q\bar{q}}(O) + \frac{C_A}{C_F} \zeta_{qg}(O)$$

Question

Is it possible to provide a fully analytic computation for $\zeta(O)$? See Melih's talk!

- Understanding Non-Perturbative corrections to collider processes is now crucial, given the high precision reached at LHC
- Large- n_f method is a reliable framework to investigate $\mathcal{O}(\Lambda_{\text{QCD}}/Q)^p$, that can be related to $\mathcal{O}(\lambda)^p$ terms in a computation with a gluon with mass λ
- $\mathcal{O}(\lambda)$ terms in our abelian model without gluons can be exposed using the Next-to-eikonal expansion
- No linear terms if integrating inclusively over the radiation phase space: analytical explanation about the absence of IR linear renormalons in the p_T distribution of the Z boson, in hadronic collisions (Ferrario Ravasio, GL, Nason ('20))
- Simplified model to predict NP corrections for Thrust and C-parameter away from the two-jet region (Caola, Ferrario Ravasio, GL, Melnikov, Nason ('21))
- Next directions: extensions to other observables (e.g. heavy jet mass) and phenomenological applications

• □ ▶ • ○□ ▶ • ○□ ▶ • ○□ ▶

THANKS FOR THE ATTENTION!!!

BACKUP

2

・ロト ・ 御 ト ・ 画 ト ・ 画 ト

Large- n_f limit and Power Corrections

If
$$\frac{\mathrm{d}\langle O\rangle_{\lambda}^{(1)}}{\mathrm{d}\lambda}\Big|_{\lambda=0} = A$$
 (constant), we study the region $\lambda < \mu_C$
$$-\frac{1}{b_0\alpha_s}\frac{\mathrm{d}\langle O\rangle_{\lambda}^{(1)}}{\mathrm{d}\lambda}\Big|_{\lambda=0}\int_0^{\mu_C}\frac{\mathrm{d}\lambda}{\pi}\arctan\frac{\pi b_0\alpha_s}{1+b_0\alpha_s\log\frac{\lambda^2}{\mu_C^2}}$$
Putting $b_0\alpha_s = a, \ \frac{\lambda}{\mu_C} = l$

 $\int_{0}^{1} \frac{\mathrm{d}l}{\pi a} \arctan \frac{\pi a}{1 + a \log(l^2)} = \underbrace{\frac{1}{\pi a} \arctan(\pi a) + \int_{0}^{1} \mathrm{d}z \frac{\pi a z \cos(\pi z/2) - \sin(\pi z/2)}{1 + (z\pi a)^2}}_{\text{Borel Integral}} + \underbrace{\frac{1}{\pi a} P \int_{0}^{\infty} \mathrm{d}t \frac{\exp(-\frac{t}{2a})}{1 - t}}_{\text{Borel Integral}} - \underbrace{\frac{1}{a} \exp(-\frac{1}{2a})}_{\text{Ambiguity}}$

• Replacing
$$a = b_0 \alpha_s = 1/\log(\mu_C^2/\Lambda_{\text{QCD}}^2)$$
 we get

$$\exp\left(-\frac{1}{2a}\right) = \frac{\Lambda_{\rm QCD}}{\mu_C}$$

The p_T of the Z: working in the Large- n_f limit

- Evaluation of NLO corrections in α_s using a gluon with non-vanishing mass λ
- IR singularities associated with a soft or collinear gluon are regulated by λ and arise as $\log \lambda$, $\log^2 \lambda$ as $\lambda \to 0$
- DIS scheme to deal with ISR gluon emitted by the d quark
- Singularity associated with the collinear photon splitting into a $d\bar{d}$ pair handled with POWHEG-BOX
- Numeric integration in the regions regulated by the gluon mass has been performed through a dedicated Fortran code

The p_T of the Z: Results for an inclusive analysis

• Fit performed using the function (Excluding $\lambda = 5 \text{ GeV}$)

$$f(\lambda) = a \left[1 + b \left(\frac{\lambda}{p_T^c} \right) + c \left(\frac{\lambda}{p_T^c} \right) \log^2 \left(\frac{\lambda}{p_T^c} \right) + d \left(\frac{\lambda}{p_T^c} \right)^2 \log \left(\frac{\lambda}{p_T^c} \right) \right]$$

• We found $b = 0.009 \pm 0.004$ and $b = 0.024 \pm 0.0017$

Shape Variables: Details of the Computation

• The C-parameter has a Sudakov shoulder within the physical range (C = 3/4)

Shape Variables: Computation in the Large- n_f limit

• Computation of

$$\langle O \rangle_{\lambda}^{(1)} = T_V(\lambda) + T_R(\lambda) + T_R^{\Delta}(\lambda)$$

with

$$T_R^{\Delta}(\lambda) = \frac{1}{\sigma_0} \frac{3\pi}{\alpha_s T_F} \lambda^2 \int \mathrm{d}\Phi_{q\bar{q}} R_{q\bar{q}}(\lambda) \delta(\lambda^2 - m_{q\bar{q}}^2) \left[O(\Phi_{q\bar{q}}) - O(\Phi_{(q\bar{q})}) \right]$$

• The integration diverges in the two-jet limit

$$F_{\rm supp} = C^2$$

• $T_V(\lambda)$:

- **()** IR divergences regulated by the gluon mass λ
- **2** UV divergences regulated in CDR $(d = 4 2\epsilon)$ and canceled in the total
- $T_R(\lambda)$ evaluated in 4 dimensions:
 - **()** IR divergences arising as γ gets soft or collinear to either d or \bar{d}
 - IR divergences when g gets collinear to either d or d

 (arising as log λ, log² λ singularities as λ → 0)

Shape Variables: Computation in the Large- n_f limit

$$T_R(\lambda) = \frac{1}{\sigma_0} \int \mathrm{d}\Phi_{3+1} R_{g^*}^{(\lambda)}(\Phi_{3+1}) O_{3+1}$$

• The real squared amplitude is divided in three regions

$$R = R^{(1)} + R^{(2)} + R^{(3)}$$

$$\begin{aligned} R^{(1)} &= \frac{f_{d\gamma}^2 + f_{\bar{d}\gamma}^2}{f_{d\gamma}^2 + f_{\bar{d}\gamma}^2 + f_{dg}^2 + f_{\bar{d}g}^2} R \quad (\gamma \parallel d(\bar{d}), \gamma \text{ soft} \\ R^{(2)} &= \frac{f_{dg}^2}{f_{d\gamma}^2 + f_{d\gamma}^2 + f_{dg}^2 + f_{\bar{d}g}^2} R \quad (g \parallel d) \\ R^{(3)} &= \frac{f_{dg}^2}{f_{d\gamma}^2 + f_{d\gamma}^2 + f_{dg}^2 + f_{\bar{d}g}^2} R \quad (g \parallel \bar{d}) \\ f_{ij} &= \frac{E_i + E_j}{(k_i + k_j)^2} \quad (i, j = d, \bar{d}, \gamma, g) \end{aligned}$$

• $R^{(1)}$ integrated within the POWHEG-BOX, $R^{(2)}$, $R^{(3)}$ with a separated Fortran code • $\gamma^* \rightarrow d\bar{d}\gamma q\bar{q} \Rightarrow$ IR finite as $\lambda \rightarrow 0$, QED singularity from γ (POWHEG-BOX)

Shape Variables: Results for Kinematical Distributions

- $\langle O \rangle_{\lambda}^{(1)} \langle O \rangle_{0}^{(1)}$, with $O = \delta(z z(\Phi))$, for t = 1 Thrust and C-parameter
- Computation for $\lambda = 0.5, 1$ GeV, for Q = 100 GeV
- Comparison between analytical approach (A) and Large- n_f limit (B)

- Behaviour in λ is nearly linear
- Excellent agreement between the two methods
- $\mathcal{O}(\lambda^2)$ entering for $C \lesssim 0.15$ and $t \lesssim 0.07$

Giovanni Limatola — July 7th, 2022

NP shift in the Shape Variable: $q\bar{q}$ dipole

• Evaluation of $\zeta_{q\bar{q}}$ in the abelian limit for Thrust and C-parameter for $\lambda = 0.1, 0.5, 1, 2$ GeV and Q = 100 GeV

- The C-parameter has a Sudakov shoulder in the 3-jet symmetric point (c = 3/4)
- We found $\zeta_{q\bar{q}}(c=3/4)=0.226(2)$ for $\lambda=0.1~{\rm GeV}$
- Good agreement with the result of Luisoni, Monni, Salam ('20) in the abelian limit: $\zeta_{\text{LMS}}(c = 3/4) = \zeta_{q\bar{q}}(c = 3/4)/\zeta_{q\bar{q}}(c = 0) = 0.224$

NP shift for C-parameter (Luisoni, Monni, Salam ('20))

- Several interpolations among the 2-jet limit and 3-jet symmetric point
- Found good agreement with the $\zeta_{b,3}$ curve, leading to $\alpha_s = 0.117(3)$
- Much better agreement with the world average value $\alpha_s = 0.118(1)$ from PDG as compared to $\alpha_s = 0.112(2)$ obtained in [1501.04111]