

LHCb measurements of Quarkonia Production in Ultraperipheral PbPb collisions and Z production in pPb collisions

Hengne Li

(South China Normal University)

on behalf of the LHCb collaboration

region

The LHCb detector

LHCb running modes and kinematic coverage

Both the collider mode and fixed-target mode running at the same time

Kinematic acceptance

Collider mode datasets:

	2013		2016		2015	2017	2018
$\sqrt{s_{NN}}$	$5.02 { m ~TeV}$		$8.16 { m ~TeV}$		5.02 TeV	$5.02 { m ~TeV}$	$5.02 { m ~TeV}$
	pPb	Pbp	pPb	Pbp	PbPb	XeXe	PbPb
\mathcal{L}	$1.1 {\rm ~nb^{-1}}$	$0.5 \ \mathrm{nb}^{-1}$	$13.6 { m ~nb^{-1}}$	20.8 nb^{-1}	$10 \ \mu b^{-1}$	$0.4 \ \mu \mathrm{b}^{-1}$	$\sim 210 \ \mu \mathrm{b}^{-1}$
)			

Ultra-peripheral production of Charmonium

- Ultra-peripheral collisions (UPC): Two nuclei bypass each other with an impact parameter greater than the sum of their radii
- Photon-induced interactions are enhanced by the strong electromagnetic field of the nucleus
 - Coherent J/ψ and ψ(2S) production gives constraints on the gluon Probability Density Functions,
 - (J/ψ) / ψ(2S) ratio measurement is helpful to constrain the choice of the vector meson wave function in dipole scattering models [e.g. PLB 772 (2017) 832, PRC (2011) 011902]

Incoherent J/ ψ production: photon interact with particular nucleons in the nucleus

Coherent J/ ψ production:

photon interact with the

whole nucleus coherently

Ultra-peripheral and peripheral photon-production

• Cross-sections:

$$\frac{\mathrm{d}\sigma_{\psi}^{\mathrm{coh}}}{\mathrm{d}x} = \frac{N_{\psi}^{\mathrm{coh}}}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) \times \Delta x}$$

- Event selection:
 - require a near empty detector with only two long tracks reconstructed, with acceptance cuts:

 $2.0 < \eta^{\mu} < 4.5$, $p_{\mathrm{T}}^{\mu} > 700 \mathrm{MeV}$,

$$p_T^{\mu\mu} < 1 {
m GeV}, \left| \varDelta \phi_{\mu\mu} \right| > 0.9 \pi$$

- HERSCHEL detector [JINST 13 (2018) 04 P04017] is used to further purify the selection
- Signal extraction: The (1) charmonium yields are extracted from dimuon mass fit, then the (2) coherent part is extracted from a ln(p_T²) fit

LHCb-PAPER-2022-012, arXiv:2206.08221

1933 考油轩范大誉 SOUTH CHILVE NORMALL SUPERSITY

Ultra-peripheral and peripheral photon-production

LHCb-PAPER-2022-012, arXiv:2206.08221

Integrated cross-section and ratio:

$(5 \pm 0.050(stat) \pm 0.222(syst) \pm 0.262(lumi))$ mb

 $\sigma_{J/\psi}^{\text{coh}} = 5.965 \pm 0.059(stat) \pm 0.232(syst) \pm 0.262(lumi) \text{ mb},$

 $\sigma^{coh}_{\psi(2S)} = 0.923 \pm 0.086(stat) \pm 0.028(syst) \pm 0.040(lumi)$ mb,

 $\sigma^{coh}_{I/\psi} / \sigma^{coh}_{\psi(2S)} = 0.155 \pm 0.014(stat) \pm 0.003 (syst).$

- Differential cross-section vs. rapidity (compared to pQCD and color-dipole models)
 - The most precise measurement for coherent J/ψ production in PbPb UPC in the forward rapidity today;
 - The first coherent $\psi(2S)$ measurement in forward rapidity region at the LHC.

Guzey et al.: PRC 93 (2016) 055206,

Krelina et al.: PRC 97 (2018) 024901,

Mantysaari et al.: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, PRD 74

Goncalves et al.: PRD 96 (2017)

094027, EPJC 40 (2005) 519,

PRC 95 (2017) 025204,

arXiv:2008.05116

(2006) 074016

LHCb-PAPER-2022-012, arXiv:2206.08221

- Differential cross-section vs. charmonium p_{T} (compared to pQCD and color-dipole models)
 - The first and most precise measurement of the coherent J/ψ and $\psi(2S)$ production cross-section vs. $p_{\rm T}$ in PbPb UPC today.

Mantysaari et al.: PLB 772 (2017) 832, PoS DIS2014 (2014) 069, PRD 74 (2006) 074016

Ultra-peripheral and peripheral photon-production

LHCb-PAPER-2022-012, arXiv:2206.08221

- The J/ψ measurement is compatible with 2015 and ALICE results.
 - The difference between the new results and 2015 measurement is about 2.0σ.

Probe nuclear modification with Z boson

- Z bosons are **unmodified** by the hot and dense medium created in heavy ion collisions,
 - Their leptonic decays pass through the medium without being affected by the strong interaction.
 - "conserved" the initial conditions of the collisions.
- Ideal probe of cold nuclear matter effects at Bjorken-x in $10^{-4} < x < 10^{-3}$ and $10^{-1} < x < 1$, with $Q^2 {\sim} 10^4 {\rm GeV^2}$.
- A calibration channel for probing the nuclear modification using other processes such as heavy quark production.

LHCb-PAPER-2022-009, arXiv:2205.10213

- LHCb pPb dataset at 8.16 TeV about 30 nb⁻¹.
- Fiducial volume:

$$p_{
m T}^{\mu} > 20~{
m GeV}, 2.0 < \eta_{\mu} < 4.5, \ 60 < m_{\mu\mu} < 120~{
m GeV}$$

• Cross-section:

$$\sigma_{Z \to \mu \mu} = \frac{N_{\text{cand}} \cdot \rho \cdot f_{\text{FSR}}}{\mathcal{L} \cdot \epsilon}$$

• Forward-backward ratio:

$$R_{\rm FB} = \frac{\sigma_{(1.53 < y^*_{\mu} < 4.03)}}{\sigma_{(-4.97 < y^*_{\mu} < -2.47)}} \cdot k_{\rm FB}$$

• Nuclear modification factors:

$$R_{pPb}^{\text{fw.}} = \frac{1}{208} \cdot \frac{\sigma_{(pPb, \ 1.53 < y^*_{\mu} < 4.03)}}{\sigma_{(pp, \ 2.0 < y^*_{\mu} < 4.5)}} \cdot k_{pPb}$$

- The cross-section, $R_{\rm FB}$ and $R_{p\rm Pb}$ are measured as a function of y_Z^* , $p_{\rm T}^Z$, and $\phi_{\eta}^* = \tan(\phi_{\rm acop}/2)/\cos(\Delta \eta/2)$ (an angular variable equivalent to $p_{\rm T}^Z$ w/o uncertainty from momentum calibration).
- $k_{\rm FB}$ and $k_{p\rm Pb}$ are the corresponding muon rapidity acceptance correction factors.
- pp reference cross-section at 8.16 TeV is interpolated from LHCb 7, 8 and 13 TeV results.

LHCb-PAPER-2022-009, arXiv:2205.10213

• Total fiducial cross-section:

 $\sigma_{Z \to \mu \mu, \text{ fwd.}}$

 $= 26.9 \pm 1.6$ (stat.) ± 0.9 (syst.) ± 0.7 (lumi.)nb

 $\sigma_{Z
ightarrow \mu \mu}$, bwd.

 $= 13.4 \pm 1.0$ (stat.) ± 0.5 (syst.) ± 0.3 (lumi.) nb

- Compatible with theoretical calculations using POWHEG v2:
 - CTEQ61 (PDF) for both *p* and Pb
 - CT14 (PDF) for *p* and EPPS16 (nPDF) for Pb
 - CTEQ61 (PDF) for *p* and nCTEQ15 (nPDF) for Pb
- Forward (small Bjorken-x) results show strong constraining power on the nPDFs.

LHCb-PAPER-2022-009, arXiv:2205.10213

backward

• Differential cross-section as a function of y_Z^* and ϕ_n^* :

- In good agreement with theoretical predictions.
- Forward: smaller uncertainty than prediction, constraints on nPDFs.
- Backward: larger uncertainty than predictions.

Forward

LHCb-PAPER-2022-009, arXiv:2205.10213

LHCb

3.0

 $|y_Z^*|$

0.10

 ϕ^*

 $pPb \sqrt{s_{NN}} = 8.16 \text{ TeV}$

 $\mathcal{L}_{Forward} = 12.2\,nb^{-1}$

 $\mathcal{L}_{Backward} = 18.6 \text{ nb}^{-1}$

3.5

LHCb

 $p Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}$

(d)

 $\mathcal{L}_{Forward} = 12.2 \, \text{nb}^{-1}$

 $\mathcal{L}_{Backward} = 18.6\, nb^{-1}$

4.0

10.00

LHCb CTEQ6.1 💋 CTEQ6.1 CT14+EPPS16 $p Pb \sqrt{s_{NN}} = 8.16 TeV$ CT14+EPPS16 2.0 2.0CTEO6.1+nCTEO15 $\mathcal{L}_{Forward} = 12.2\, nb^{-1}$ CTEO6.1+nCTEO15 🔶 Data 🔶 Data $\mathcal{L}_{Backward} = 18.6 \text{ nb}^{-1}$ $^{1.5}$ $^{\prime}$ $R_{
m FB}^{
m TB}$ Forward: $2.5 < y_Z^* < 4.0$ Forward: $2.5 < y_Z^* < 4.0$ Backward: $-4.0 < y_z^* < -2.5$ Backward: $-4.0 < y_Z^* < -2.5$ (a)1.01.00.50.5 $0.0 \\ 2.5$ 0.0 2.54.0 $|y_{Z}^{*}|$ 3.0 3.0 LHCb CTEQ6.1 /// CTEQ6.1 2.52.5CT14+EPPS16 $p Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}$ CT14+EPPS16 CTEQ6.1+nCTEQ15 CTEQ6.1+nCTEQ15 $\mathcal{L}_{Forward} = 12.2\, nb^{-1}$ 🔶 Data 🔶 Data 2.0 2.0 $\mathcal{L}_{Backward} = 18.6 \, \mathrm{nb}^{-1}$ Forward: $2.5 < y_Z^* < 4.0$ Forward: $2.5 < y_{Z}^{*} < 4.0$ $^{
m BHB}_{
m HB}$ Backward: $-4.0 < y_Z^* < -2.5$ $\overset{\mathrm{g}_{\mathrm{HB}}}{H}^{1.5}$ (c) Backward: $-4.0 < y_Z^* < -2.5$

2.5

1.0

0.5

0.0

LHCb-PAPER-2022-009, arXiv:2205.10213

2.5

1.0

0.5

0.0

.ŏ.00

0.01

- Forward-backward ratio measured in common rapidity window $2.5 < |y_{Z}^{*}| < 4.0$:
 - Total $R_{\rm FB} = 0.78 \pm 0.10$
 - As a function of y_Z^* , p_T^Z , and ϕ_n^* , see plots
- A general suppression below unity.
- Compatible with theoretical predictions. •
- Higher precision in total $R_{\rm FB}$ and certain bins as a • function y_Z^* , p_T^Z , and ϕ_{η}^* can constrain the nPDFs.

10

100

1.00

LHCb-PAPER-2022-009, arXiv:2205.10213

- Nuclear modification factors as a function of y_Z^* , p_T^Z , and ϕ_η^*
- Compatible with theoretical predictions.
- Constraints on nPDFs are visible in certain bins in case of forward collisions.

Conclusion

- A new measurement of exclusive coherent J/ ψ and ψ (2S) production and their cross-section ratio in UPC PbPb collisions using 2018 dataset.
 - The most precise coherent J/ ψ production measurement and the first coherent $\psi(2S)$ measurement in forward rapidity region for UPC at LHC.
 - The first measurement of coherent J/ ψ and ψ (2S) production cross-section vs. $p_{\rm T}$ in PbPb UPC.
- A new Z boson production measurement in pPb collisions at 8.16 TeV
 - The differential cross-section, $R_{\rm FB}$ and $R_{p\rm Pb}$ as a function of y_Z^* , $p_{\rm T}^Z$, and ϕ_η^* are measured for the first time in the forward region at LHCb.
 - The new results are compatible with nCTEQ15 or EPPS16 nPDFs calculations.
 - Forward (small Bjorken-x) results show strong constraining power on the nPDFs.

Supplementary material for LHCb-PAPER-2022

https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2022-009.html

- Concerning the difference between the fourth data point (19 < pZ T < 34GeV) and the corresponding theoretical prediction in the differential fiducial cross-section measurement as a function of Z boson pT, a detailed study has been performed.
- This study excludes possible bugs from data quality, efficiency estimation, beam crossing angle, geometry acceptance, track reconstruction quality, and possible contributions from missing backgrounds such as standard model ZZ.
- Therefore, it is concluded as a statistical fluctuation.
- The p-value and the corresponding local significance of differences between the measurements and the PowhegBox predictions are shown in Fig. 1. The p-value of the fourth data point corresponds to about a 3-σ significance.

