ATLAS measurements of photon-photon fusion processes in Pb+Pb collisions

Valerie Lang On behalf of the ATLAS Collaboration ICHEP 2022, Bologna, Italy 9 July 2022

Albert-Ludwigs-Universität Freiburg

Particle physics with an (almost) empty detector

- At a hadron collider!
 - In PbPb collisions
 - With ATLAS
 - In Run-2 of the LHC (2015, 2018)
- ... with many interesting results!

UNI FREIBURG

Measuring yy-fusion processes

- Production of di-leptons/di-photons in ultra-peripheral (UPC) PbPb collisions
 - Initial photons from electromagnetic fields of Pb
 - Cross section enhanced by $Z^4 = 4.5^{*}10^7$ w.r.t. pp
 - In $\sqrt{s_{NN}}$ =5.02TeV, initial-E_y up to 100GeV
 - Can include nuclear break-up

Measuring yy-fusion processes

- Production of di-leptons/di-photons in ultra-peripheral (UPC) PbPb collisions
 - Initial photons from electromagnetic fields of Pb
 - Cross section enhanced by $Z^4 = 4.5^{*}10^7$ w.r.t. pp
 - In $\sqrt{s_{NN}}$ =5.02TeV, initial-E_y up to 100GeV
 - Can include nuclear break-up
- Covering the following signatures
 - γγ→ee <u>ATLAS-CONF-2022-025</u>
 - γγ→μμ *Phys. Rev. C* 104 (2021) 024906
 - γγ→ττ <u>arXiv:2204.13478</u>
 - γγ→γγ <u>JHEP 03 (2021) 243</u>
 - γγ→μμ (non-UPC) <u>arXiv:2206.12594</u>

 \rightarrow Just a teaser for the publications – feel free to read further \odot

Di-electron and di-muon production

<u>ATLAS-CONF-2022-025</u> <u>Phys. Rev. C 104 (2021) 024906</u>

- Measurements of integrated and differential fiducial cross sections in UPC
 - Suppress dissociative production (with nucleus break-up) → Measure 0n0n fraction

Di-electron and di-muon production ATLAS-CONF-2022-025 \mathbf{Pb} \mathbf{Pb} Phys. Rev. C 104 (2021) 024906 e⁻,μ⁻ k_2 e⁻,μ⁻ Measurements of integrated and differential fiducial cross sections in UPC e⁺, μ⁺ k_1 k_1 e^+ , μ^+ Suppress dissociative production (with nucleus break-up) \rightarrow Measure 0n0n fraction $Pb^{\star} + X$ \mathbf{Pb} p (in Pb) \mathbf{Ph} \rightarrow Measurement of differential cross section **ATLAS** Preliminary 10⁵ *d*α/*d*α [μb] 0.8 \rightarrow Implicit test of 10^{4} 0.7 the origin of the 10^3 0.6 photons! 0.5 10^{2} \rightarrow In dissociative 0.4 Pb+Pb $\sqrt{s_{NN}}$ =5.02 TeV, 1.72 nb⁻¹ ATLAS 10 production, $PbPb(\gamma\gamma) \rightarrow \mu^{+}\mu^{-}(PbPb)$ 0.3⊨ ₩ |y_{ee}|<0.8 5.02 TeV 0.48 nb photon from the 0.2 $m_{\mu\mu}^{1,\mu}$ > 10 GeV, p_ < 2 GeV 🔉 1.6<|y__|<2.4 substructure of Unfolded 0n0n data 0.1 10⁻¹ STARlight+Pvthia8 the nucleon STARlight 10^{-2} 20 60 70 80 30 50 10 40 10^{-2} 10^{-3} 10^{-1} 10^{-4} m_{ee} [GeV] $\alpha (= 1 - |\Delta \phi| / \pi)$ \rightarrow Modelling of final state radiation essential

τ-lepton pairs in UPC arXiv:2204.13478

- Pb Pb μ ν_{μ} ν_{τ} μ_{μ} ν_{τ} μ_{μ} ν_{τ} μ_{τ} μ_{τ}
- Reconstruct T-leptons from decay products
 - Trigger on presence of muon in one τ-decay
 - Hadronic decays reconstructed via tracks with $p_T > 100 MeV$
- \rightarrow In signal region with 1 muon and 1 track

τ-lepton pairs in UPC arXiv:2204.13478

- Reconstruct T-leptons from decay products
 - Trigger on presence of muon in one τ-decay
 - Hadronic decays reconstructed via tracks with $p_T > 100 MeV$

 \rightarrow Extract anomalous magnetic moment of the T-lepton: a_T

Pb

Pb

Pb

 ν_{τ}

Pb

U

→ Expected 95% confidence level interval competitive with the world-best measurement from DELPHI (2004)

ightarrow In signal region with 1 muon and 1 track

Light-by-light scattering

- Could also have axion-like particles (ALPs) as intermediate particle
 - Measure differential cross sections

URG

6

Light-by-light scattering

- Could also have axion-like particles (ALPs) as intermediate particle
 - Measure differential cross sections

 \rightarrow Exclude couplings to ALPs

→ Most stringent limits on ALPs couplings for ALPs masses of 6-100GeV URG

6

R.

$\gamma \gamma \rightarrow \mu \mu$ with non-UPC configuration

- Muon pairs as electromagnetic probes of the quark-gluon plasma
 - Consider transverse momentum scale: $k_{\perp}=1/2(p_{T1}+p_{T2})(\pi-|\phi_1-\phi_2|)$
 - $k_{\perp}\approx 0$, if leptons are back-to-back in ϕ
 - $k_{\perp} \approx factor^*average p_T$, where factor is larger if leptons are more aligned in ϕ
 - \rightarrow Dependence on collision centrality

NEW

$\gamma \gamma \rightarrow \mu \mu$ with non-UPC configuration

- Muon pairs as electromagnetic probes of the quark-gluon plasma
 - Consider transverse momentum scale: $k_{\perp}=1/2(p_{T1}+p_{T2})(\pi-|\phi_1-\phi_2|)$
 - $k_{\perp}\approx 0$, if leptons are back-to-back in ϕ
 - $k_{\perp} \approx factor^*average p_{T}$, where factor is larger if leptons are more aligned in ϕ
 - \rightarrow Dependence on collision centrality

 \rightarrow Influence of magnetic field effects?

NEW

URG

6

$\gamma \gamma \rightarrow \mu \mu$ with non-UPC configuration

- Muon pairs as electromagnetic probes of the quark-gluon plasma
 - Consider transverse momentum scale: $k_{\perp}=1/2(p_{T1}+p_{T2})(\pi-|\phi_1-\phi_2|)$
 - $k_{\perp}\approx 0$, if leptons are back-to-back in ϕ
 - $k_{\perp} \approx factor^*average p_{T}$, where factor is larger if leptons are more aligned in ϕ

 \rightarrow Dependence on collision centrality

 \rightarrow Influence of magnetic field effects?

NEW

URG

6

- Interesting physics with nearly empty detectors possible
 - Photo-production of lepton pairs, and light-by-light scattering measured in Run-2
 - Measurement of (fiducial) cross sections, but also beyond standard model constraints
 - Testing Monte-Carlo simulations with $\gamma\gamma \rightarrow ee$ and $\gamma\gamma \rightarrow \mu\mu$ production
 - First observation of γγ→ττ production and competitive confidence interval for anomalous magnetic moment of τ-lepton
 - Best limits on axion-like particle searches with 6-100GeV particle mass from $\gamma\gamma \rightarrow \gamma\gamma$
 - Magnetic effects not the main source for γγ→µµ azimuthal effects in non-UPC

Summary

15

Interesting physics with nearly empty detectors possible

- Photo-production of lepton pairs, and light-by-light scattering measured in Run-2
- Measurement of (fiducial) cross sections, but also beyond standard model constraints
 - Testing Monte-Carlo simulations with γγ→ee and γγ→μµ production
 - First observation of γγ→ττ production and competitive confidence interval for anomalous magnetic moment of τ-lepton
 - Best limits on axion-like particle searches with 6-100GeV particle mass from $\gamma\gamma \rightarrow \gamma\gamma$
 - Magnetic effects not the main source for $\gamma\gamma \rightarrow \mu\mu$ azimuthal effects in non-UPC
 - → Fun to push the ATLAS detector into regions it was not designed for ☺
 - \rightarrow Only getting started and more data to come

Thank you for your attention

Backup

Measuring particles from collision

- ATLAS detector Multi-purpose detector with near 4π coverage
 - Near-beam rapidity neutrons detected in Zero degree calorimeter (ZDC)
 - Covers $|\eta| > 8.3 \rightarrow 140$ m away from interaction point (IP)
 - Measure centrality of PbPb collisions by amount of activity in ZDC arms

