Studies of beauty hadronization and in-medium energy loss with B^{+}and $\mathrm{B}_{\mathrm{s}}^{0}$ spectra

ICHEP 2022

Tzu-An Sheng
for the CMS Collaboration

PLB 829 (2022) 137062

Jul. 72022

Introduction

B_{s}^{0} / B^{+}ratio: strangeness enhancement

Double ratio, 2015 data

- Enhanced strangeness predicted for $p_{\mathrm{T}}<15 \mathrm{GeV}$ in deconfined medium [Phys.Lett.B 595 (2004) 202-208, Phys.Lett.B 735 (2014) 445-450]
- Heavy b, c quarks produced at initial hard scattering, recombining with nearby constituent quarks into hadrons
- This talk: 2018 data, 3 times more statistics compared to 2015 B $^{+}$and $\mathrm{B}_{\mathrm{s}}^{0}$ samples

[^0]
$\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$analysis

$\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$event selection

- Long-lived B mesons \rightarrow large flight length
- Angle between B flight direction and PV-SV displacement $\cos \theta=\hat{r}_{\mathrm{B}, \text { flight }} \cdot \hat{p}_{\text {T, eco }}$ Expect $\hat{p}_{\text {T, eco }} \| \hat{r}_{\mathrm{B}, \text { flight }}$
- x^{2} Probability of the decay vertex
- Additionally for $\mathrm{B}_{\mathrm{s}}^{0}$:

$$
m_{\mathrm{K}^{+} \mathrm{K}^{-}}-m_{\phi}
$$

- p_{T} of the daughter tracks

Cut optimization

- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
- Select on each variable sequentially in a tree structure
- Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events

Cut optimization

- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
- Select on each variable sequentially in a tree structure
- Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events

- Training samples: signal MC vs side-band data

$\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$Yield extraction

- First 50+ observation of $\mathrm{B}_{\mathrm{s}}^{0}$ in PbPb collision
- B^{+}peaking background:
- Partially reconstructed B decay (e.g. $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi\left(\mathrm{K}^{*} \rightarrow \mathrm{~K}^{+} \pi^{-}\right)$
- misidentified π in $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \pi^{+}$

Efficiency correction

- Ideally, $\varepsilon=\frac{N \text { of reco }}{N \text { of gen }}$

Efficiency correction

- Ideally, $\varepsilon=\frac{N \text { of recon }}{N \text { of gen }}$
- But p_{T} distribution depends on MC model
\Rightarrow Take p_{T} distribution from data $\varepsilon=\sum_{i=0}^{N} \frac{\varepsilon_{i}\left(p_{T}\right) n_{i}\left(p_{\mathrm{T}}\right)}{n_{i}\left(p_{\mathrm{T}}\right)}$

Efficiency correction

- Ideally, $\varepsilon=\frac{N \text { of reco }}{N \text { of gen }}$
- But p_{T} distribution depends on MC model
\Rightarrow Take p_{T} distribution from data $\varepsilon=\sum_{i=0}^{N} \frac{\varepsilon_{i}\left(p_{T}\right) n_{i}\left(p_{\mathrm{T}}\right)}{n_{i}\left(p_{T}\right)}$
- But p_{T} is correlated with y
- \Rightarrow Take p_{T}, y distribution from data

$$
\varepsilon=\sum_{i, j}^{N_{i}, N_{j}} \frac{\varepsilon_{i, j}\left(p_{\mathrm{T}}, y\right) n_{i}\left(p_{\mathrm{T}}\right) n_{j}(y)}{n_{i}\left(p_{\mathrm{T}}\right) n_{j}(y)}
$$

Efficiency correction

- Ideally, $\varepsilon=\frac{N \text { of reco }}{N \text { of gen }}$
- But p_{T} distribution depends on MC model
- \Rightarrow Take p_{T} distribution from data $\varepsilon=\sum_{i=0}^{N} \frac{\varepsilon_{i}\left(p_{T}\right) n_{i}\left(p_{T}\right)}{n_{i}\left(p_{T}\right)}$
- But p_{T} is correlated with y
\Rightarrow Take p_{T}, y distribution from data

$$
\varepsilon=\sum_{i, j}^{N_{i}, N_{j}} \frac{\varepsilon_{i, j}\left(p_{\mathrm{T}}, y\right) n_{i}\left(p_{\mathrm{T}}\right) n_{j}(y)}{n_{i}\left(p_{\mathrm{T}}\right) n_{j}(y)}
$$

- But $\varepsilon_{i, j}\left(p_{\mathrm{T}}, y\right)$ is too different from normal distribution
- Use inverse efficiency

$$
\frac{1}{\varepsilon}=\sum_{i, j}^{N_{i}, N_{j}} \frac{\frac{1}{\varepsilon_{i, j}\left(p_{\mathrm{T}}, y\right)} n_{i}\left(p_{\mathrm{T}}\right) n_{j}(y)}{n_{i}\left(p_{\mathrm{T}}\right) n_{j}(y)}
$$

$\mathrm{B}_{\mathrm{s}}^{0}$ and B^{+}yields

- Enhanced yields in PbPb at low p_{T} and high centrality
- Dominant uncertainty:
- Data/MC disagreement on selection variables (BDT score)
- Tracking efficiency

$\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$yield ratio

$$
\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+} \text {vs } p_{\mathrm{T}}
$$

- Compatible with PbPb recombination models
- Compatible with pp data

$\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$vs centrality

both plots: PLB 829 (2022) 137062

- Indicate higher $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$ratio in central events but not significant

$\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$yield ratio compared with charm

arXiv:2109.01908
CMS-PAS-HIN-18-017
PLB 827 (2022) $1369\{$

- Similar magnitudes of $\mathrm{D}_{\mathrm{s}} / \mathrm{D}^{0}$ and $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$

Summary

Updated $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$ratio with the 2018 CMS data

- First observation of $\mathrm{B}_{\mathrm{s}}^{0}>5 \sigma$ in PbPb collision
- Enhancement at low p_{T} but not significant with the current precision

Outlook

- Update with 2017 pp data at the LHC coming soon
$\rightarrow R_{\text {AA }}$ measurement
- New PbPb run at the end of this year

The MIT group's work was supported by US DOE-NP

Backup

Muon selection for $\mathrm{B}^{+} / \mathrm{B}_{\mathrm{s}}^{0}$

- $p_{\mathrm{T}}^{\mu}>3.5$ for $\left|\eta^{\mu}\right|<1.2$
- $p_{\mathrm{T}}^{\mu}>1.5$ for $2.1<\left|\eta^{\mu}\right|<2.4$
- $p_{\mathrm{T}}^{\mu}>\left(5.47-1.89\left|\eta^{\mu}\right|\right)$ for $1.2<\left|\eta^{\mu}\right|<2.1$
- $m_{\mu^{-} \mu^{+}}$in J / ψ or ϕ range
- Probability of 2μ fitted to a common vertex

Systematic uncertainty for $\mathrm{B}^{+} / \mathrm{B}_{\mathrm{s}}^{0}$

- Due to fit modeling
- Signal variation: 3-Gaussian, 10\% variation of its width, fixing common mean to MC
- Background variation: low-order polynomial for combinatorial background
- Estimated with squared sum of maximum variations
- Due to limited MC sample size
- 1000 generated $\alpha \times \varepsilon 2$ D maps
- Estimated with the width of the $1 /\langle\alpha \times \varepsilon\rangle$
- Due to data/MC discrepancy
- Data/MC ratio from sPlot method are used to re-weight the MC distribution

$\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$systematic uncertainty

	B^{+}			$\mathrm{B}_{\mathrm{s}}^{0}$		
Centrality class	0-30\%	30-90\%	0-90\%	0-30\%	30-90\%	0-90\%
Muon efficiency	+4.2	+4.1	+4.2	+5.5	+4.6	+5.3
Muon efficiency	-3.8	-3.8	-3.8	-4.9	-4.2	-4.7
Data/MC agreement	13	8.0	12	3.1	3.7	3.2
MC sample size	3.2	2.2	2.4	6.6	2.3	4.4
Fit modeling	2.5	2.8	2.6	2.5	3.2	2.3
Tracking efficiency	5.0	5.0	5.0	10	10	10
$T_{\text {AA }}$	2.0	3.6	2.2	2.0	3.6	2.2
$N_{\text {MB }}$	1.3	1.3	1.3	1.3	1.3	1.3
Branching fraction		2.9			7.5	

- Data/MC disagreement from reweighted $\alpha \times \varepsilon$ using the sPlot method

$\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$production yield calculation

$$
\frac{1}{T_{A A}} \frac{\mathrm{~d} N}{\mathrm{~d} p_{\mathrm{T}}}=\frac{1}{2 \mathcal{B} N_{\mathrm{MB}} T_{A A}} \frac{N_{\mathrm{obs}}\left(p_{\mathrm{T}}\right)}{\Delta p_{\mathrm{T}}} \times\left\langle\frac{1}{\alpha\left(p_{\mathrm{T}}, y\right) \times \varepsilon\left(p_{\mathrm{T}}, y\right)}\right\rangle
$$

- 1/2: raw yield measured with particles and antiparticles
- $T_{A A}=(5.6 \pm 0.2) \mathrm{mb}^{-1}$
- Acceptance and efficiency corrected using a fine $\left(p_{\mathrm{T}}, y\right)$ 2D map
- Efficiency map corrected by data/MC scale factors with tag-and-probe (with J/ ψ)

[^0]: B^{+}: PRL 119, 152301
 $\mathrm{B}_{\mathrm{s}}^{0}:$ PLB 796 (2019) 168

