Studies of beauty hadronization and in-medium energy loss with B⁺ and B⁰_s spectra

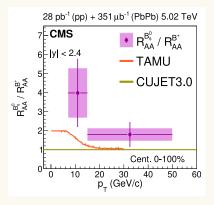
ICHEP 2022

Tzu-An Sheng for the CMS Collaboration

PLB 829 (2022) 137062 Jul. 7 2022

Introduction

Double ratio, 2015 data

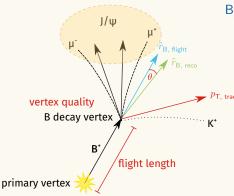


B⁺: PRL 119, 152301 B⁰_s: PLB 796 (2019) 168

- Enhanced strangeness predicted for $p_{\rm T} < 15~{\rm GeV}$ in deconfined medium $_{\rm [Phys.Lett.B}~595~(2004)~202-208, }$ $_{\rm Phys.Lett.B}~735~(2014)~445-450]$
- Heavy b, c quarks produced at initial hard scattering, recombining with nearby constituent quarks into hadrons
- This talk: 2018 data, 3 times more statistics compared to 2015 B^+ and B^0_{s} samples

 B_s^0/B^+ analysis

B_s^0/B^+ event selection



• Additionally for B_s⁰:

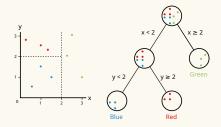
 $m_{\rm K^+K^-}-m_\phi$

$$\begin{split} \mathsf{B}^+ &\to \mathsf{J}/\psi \,\mathsf{K}^+ \to \mu^- \mu^+ \mathsf{K}^+ \\ \mathsf{B}^0_{\mathrm{s}} &\to \mathsf{J}/\psi \phi(\mathrm{1020}) \to \mu^- \mu^+ \mathsf{K}^+ \mathsf{K}^- \end{split}$$

- $\begin{array}{lll} & \cdot & \text{Long-lived B mesons} \\ & p_{\text{T, track}} & \rightarrow \text{large flight length} \end{array}$
 - Angle between B flight direction and PV-SV displacement $\cos \theta = \hat{r}_{\text{B, flight}} \cdot \hat{p}_{\text{T, RECO}}$ Expect $\hat{p}_{\text{T, RECO}} \parallel \hat{r}_{\text{B, flight}}$
 - χ^2 Probability of the decay vertex
 - + $p_{\rm T}$ of the daughter tracks

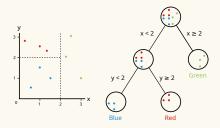
Cut optimization

- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
 - Select on each variable sequentially in a tree structure
 - Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events



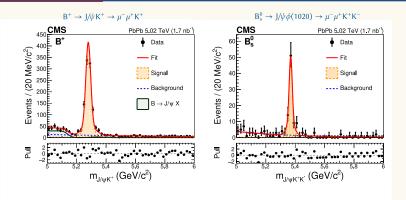
Cut optimization

- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
 - Select on each variable sequentially in a tree structure
 - Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events



• Training samples: signal MC vs side-band data

B_s^0/B^+ Yield extraction



PLB 829 (2022) 137062

- + First 5 σ + observation of B_s^0 in PbPb collision
- B⁺ peaking background:
 - Partially reconstructed B decay (e.g. ${\sf B}^0 o {\sf J}/\psi({\sf K}^* o {\sf K}^+\pi^-)$
 - + misidentified π in ${\rm B^+} \rightarrow {\rm J}/\psi \, \pi^+$

• Ideally, $\varepsilon = \frac{N \text{ of reco}}{N \text{ of gen}}$

- Ideally, $\varepsilon = \frac{N \text{ of reco}}{N \text{ of gen}}$
 - + But $p_{\rm T}$ distribution depends on MC model
- \Rightarrow Take p_{T} distribution from data $\varepsilon = \sum_{i=0}^{N} \frac{\varepsilon_{i}(p_{T})n_{i}(p_{T})}{n_{i}(p_{T})}$

- Ideally, $\varepsilon = \frac{N \text{ of reco}}{N \text{ of gen}}$
 - + But $p_{\rm T}$ distribution depends on MC model
- \Rightarrow Take p_{T} distribution from data $\varepsilon = \sum_{i=0}^{N} \frac{\varepsilon_{i}(p_{T})n_{i}(p_{T})}{n_{i}(p_{T})}$
 - + But $p_{\rm T}$ is correlated with y
- $\cdot \Rightarrow$ Take p_{T}, y distribution from data

$$\varepsilon = \sum_{i,j}^{N_i,N_j} \frac{\varepsilon_{i,j}(p_{\mathrm{T}},y)n_i(p_{\mathrm{T}})n_j(y)}{n_i(p_{\mathrm{T}})n_j(y)}$$

- Ideally, $\varepsilon = \frac{N \text{ of reco}}{N \text{ of gen}}$
 - + But $p_{\rm T}$ distribution depends on MC model
- \Rightarrow Take p_{T} distribution from data $\varepsilon = \sum_{i=0}^{N} \frac{\varepsilon_{i}(p_{T})n_{i}(p_{T})}{n_{i}(p_{T})}$
 - + But $p_{\rm T}$ is correlated with y
- $\cdot \Rightarrow$ Take $p_{\scriptscriptstyle \rm T}, y$ distribution from data

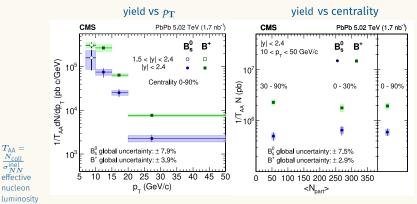
$$\varepsilon = \sum_{i,j}^{N_i,N_j} \frac{\varepsilon_{i,j}(p_{\mathrm{T}},y)n_i(p_{\mathrm{T}})n_j(y)}{n_i(p_{\mathrm{T}})n_j(y)}$$

- + But $\varepsilon_{i,j}(p_{\mathrm{T}},y)$ is too different from normal distribution
- Use inverse efficiency

$$\frac{1}{\varepsilon} = \sum_{i,j}^{N_i,N_j} \frac{\frac{1}{\varepsilon_{i,j}(p_{\mathrm{T}},y)} n_i(p_{\mathrm{T}}) n_j(y)}{n_i(p_{\mathrm{T}}) n_j(y)}$$

B_c^0 and B^+ yields

 $\sigma_{NN}^{\text{inel}}$

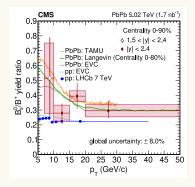


PLB 829 (2022) 137062

- Enhanced yields in PbPb at low p_{τ} and high centrality
- Dominant uncertainty:
 - Data/MC disagreement on selection variables (BDT score)
 - Tracking efficiency

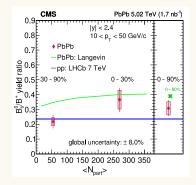
B_s^0/B^+ yield ratio

$\rm B_s^0/B^+$ vs $p_{\rm T}$



- Compatible with PbPb recombination models
- Compatible with pp data

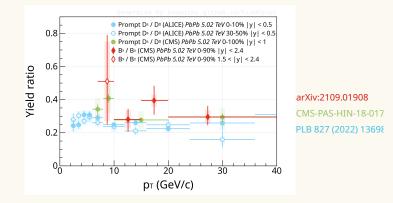
B_s^0/B^+ vs centrality



both plots: PLB 829 (2022) 137062

- Indicate higher B_s^0/B^+ ratio in central events but not significant

B_s^0/B^+ yield ratio compared with charm

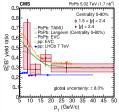


 \cdot Similar magnitudes of $\rm D_s/\rm D^0$ and $\rm B^0_s/\rm B^+$

Summary

Updated B_s^0/B^+ ratio with the 2018 CMS data

- First observation of ${\sf B}^0_{\sf s} > 5\sigma$ in PbPb collision
- Enhancement at low $p_{\rm T}$ but not significant with the current precision



Outlook

- Update with 2017 pp data at the LHC coming soon PLB 829 (2022) 137062
 - $\rightarrow R_{\rm AA}$ measurement
- New PbPb run at the end of this year

The MIT group's work was supported by US DOE-NP

Backup

- + $p_{\rm T}^{\mu} > 3.5$ for $|\eta^{\mu}| < 1.2$
- + $p_{\rm T}^{\mu} > 1.5$ for $2.1 < |\eta^{\mu}| < 2.4$
- + $p_{\rm T}^{\mu} > (5.47 1.89 |\eta^{\mu}|)$ for $1.2 < |\eta^{\mu}| < 2.1$
- + $m_{\mu^-\mu^+}$ in J/ ψ or ϕ range
- Probability of 2μ fitted to a common vertex

Systematic uncertainty for B^+/B_s^0

- Due to fit modeling
 - Signal variation: 3-Gaussian, 10% variation of its width, fixing common mean to MC
 - Background variation: low-order polynomial for combinatorial background
 - · Estimated with squared sum of maximum variations
- Due to limited MC sample size
 - + 1000 generated $\alpha \times \varepsilon$ 2D maps
 - Estimated with the width of the 1/ $\langle \alpha imes arepsilon
 angle$
- Due to data/MC discrepancy
 - Data/MC ratio from sPlot method are used to re-weight the MC distribution

	B^+			$\mathrm{B_s^0}$		
Centrality class	0–30%	30–90%	0–90%	0–30%	30-90%	0–90%
Muon efficiency	+4.2	+4.1	+4.2	+5.5	+4.6	+5.3
	-3.8	-3.8	-3.8	-4.9	-4.2	-4.7
Data/MC agreement	13	8.0	12	3.1	3.7	3.2
MC sample size	3.2	2.2	2.4	6.6	2.3	4.4
Fit modeling	2.5	2.8	2.6	2.5	3.2	2.3
Tracking efficiency	5.0	5.0	5.0	10	10	10
T _{AA}	2.0	3.6	2.2	2.0	3.6	2.2
$N_{ m MB}$	1.3	1.3	1.3	1.3	1.3	1.3
Branching fraction		2.9			7.5	

- Data/MC disagreement from reweighted $\alpha \times \varepsilon$ using the sPlot method

$$\frac{1}{T_{AA}}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2\mathcal{B}N_{\mathrm{MB}}T_{AA}}\frac{N_{\mathrm{obs}}(p_{\mathrm{T}})}{\Delta p_{\mathrm{T}}} \times \left\langle \frac{1}{\alpha(p_{\mathrm{T}},y)\times\varepsilon(p_{\mathrm{T}},y)} \right\rangle$$

- 1/2: raw yield measured with particles and antiparticles
- $T_{AA} = (5.6 \pm 0.2) \, {\rm mb}^{-1}$
- + Acceptance and efficiency corrected using a fine $(p_{\rm T},y)$ 2D map
- Efficiency map corrected by data/MC scale factors with tag-and-probe (with ${\rm J}/\psi)$