

New results on the heavy-flavor and quarkonia measurements with ATLAS

Wenkai Zou for the ATLAS collaboration

Motivation

- Heavy flavor (HF) quarks (b/c): large masses compared to the quark-gluon plasma (QGP) temperature
- ➤ Produced primarily at early times in the collisions
- ➤ May not completely thermalize

Motivation

- Heavy flavor (HF) quarks (b/c): large masses compared to the quark-gluon plasma (QGP) temperature
- > Produced primarily at early times in the collisions
- ➤ May not completely thermalize
- Color screening from the deconfined medium
- Three Υ meson states (quarkonia) have different binding energies.
- Their "sequential melting" serves as a QGP "thermometer".

Motivation

- Heavy flavor (HF) quarks (b/c): large masses compared to the quark-gluon plasma (QGP) temperature
- ➤ Produced primarily at early times in the collisions
- ➤ May not completely thermalize
- Open HF quarks lose energy and deflect in the QGP.
- ➤ Probe the properties of the medium

γ signal extraction

• γ states measured in the di-muon channel at midrapidity.

- Sequential suppression: $\Upsilon(1S) > \Upsilon(2S) > \Upsilon(2S+3S)$
- Stronger suppression in central collisions

Double ratio

Some common systematic uncertainties are cancelled out.

Double ratio

- Sequential suppression is significant (below unity).
- Slightly decreasing toward more central; no significant p_{T} dependence.

Template fit to remove the background:

ID-MS momentum imbalance

$$\rho = (p^{\text{ID}} - p^{\text{MS}}) / p^{\text{ID}}$$

Open HF (b/c) muon

Template fit to statistically separate b/c: muon d_0

<- slightly different lifetime

- c is more suppressed than b at low p_{T}
 - Consistent above ~10 GeV

•
$$v_2(c) > v_2(b)$$

- c is more suppressed than b at low p_{T}
 - Consistent above ~10 GeV
- $v_2(c) > v_2(b)$
 - Strong centrality dependence observed

• No theory model describes b/c $R_{\rm AA}/v_2$ simultaneously.

Yield suppression double ratio

- Large uncertainties due to anti-correlation between b and c
- Charm is more suppressed at low p_{T} ; comparable at higher p_{T} .
 - Model underestimates $c R_{\rm AA}$ (and the double ratio) at low $p_{\rm T}$ in 0-10%.

Yield suppression double ratio

- Charm is more suppressed at low pT; comparable at higher p_{T} .
- Mass ordering consistent with the dead-cone effect

HF muon pair

- Back-to-back muon pair from semi-leptonic decays of HF quarks:
 - $|\Delta\eta| > 0.8$ -> remove the near-side jet peak
 - Invariant mass cuts (only on opposite sign pairs) -> remove J/ψ , Υ etc.
- **bb** dominate in the same-sign (neutral B mixing) and inclusive di-muon pairs (kinematic) <- MC

Back-to-back yield extraction

The following fit function is used to extract the signal:

$$dN/d\Delta\phi = N_0 + N^{\text{flow}}\cos(2\Delta\phi) + Y^{\text{corr}}(\Delta\phi),$$

With (Lorentzian)

Modulated background Back-to-back correlation yields

$$Y^{\text{corr}}(\Delta\phi) = \frac{N^{\text{corr}}}{(\Delta\phi - \pi)^2 + \tau^2} - N^{\text{pedestal}},$$

(pedestal term chosen such that Y(0) = 0)

Yield = integral of Y
Width = std deviation of Y

Di-muon correlation: yields

- Similar trend for both the same sign and opposite sign.
- T_{AA} scaled yields suggest stronger suppression in more central collisions.

Di-muon correlation: width

Centrality-independent width indicates no significant change in the width.

Di-muon correlation: width

- Both coll and coll + rad lead to the broadening <- not observed
- However, some recent <u>new results</u> suggest that the rad. may largely cancel out broadening from the coll.

b-jet

- b-jet reconstruction: containing muons from the semi-leptonic decay
 - b-quark: directly produced in the hard scattering or from a gluon splitting
- Template fit:
 - Jet + μ axis:

$$\vec{u}_{\mathrm{T}}^{\mathrm{jet}+\mu} = \frac{\vec{p}_{\mathrm{T}}^{\mu} + \vec{p}_{\mathrm{T}}^{\mathrm{jet}}}{\left| \vec{p}_{\mathrm{T}}^{\mu} + \vec{p}_{\mathrm{T}}^{\mathrm{jet}} \right|}$$

 \triangleright Muon p_{T} projection:

$$p_{\mathrm{T}}^{\mathrm{rel}} = \left| \vec{p}_{\mathrm{T}}^{\mu} \times \vec{u}_{\mathrm{T}}^{\mathrm{jet} + \mu} \right|$$

- Muon candidates:
 - $p_{\rm T} > 4 \, {\rm GeV}$
 - Within the jet cone (R)

b-jet signal extraction

- b-jet reconstruction: containing muons from the semi-leptonic decay
 - b-quark: directly produced in the hard scattering or from a gluon splitting
- Template fit:
 - Jet + μ axis:

$$\vec{u}_{\mathrm{T}}^{\mathrm{jet}+\mu} = \frac{\vec{p}_{\mathrm{T}}^{\mu} + \vec{p}_{\mathrm{T}}^{\mathrm{jet}}}{\left| \vec{p}_{\mathrm{T}}^{\mu} + \vec{p}_{\mathrm{T}}^{\mathrm{jet}} \right|}$$

 \triangleright Muon $p_{\rm T}$ projection:

$$p_{\mathrm{T}}^{\mathrm{rel}} = \left| \vec{p}_{\mathrm{T}}^{\mu} \times \vec{u}_{\mathrm{T}}^{\mathrm{jet} + \mu} \right|$$

- Muon candidates:
 - $p_{\rm T} > 4 \, {\rm GeV}$
 - Within the jet cone (R)
- Pb+Pb combinatoric term estimated from event mixing

Nuclear modification factor

- b-jets are less suppressed compared to inclusive jets in central collisions.
- Stronger suppression in more central collisions.

Double ratio

- Some common uncertainties are cancelled out in the double ratio.
- ~unity in peripheral; about 20% above unity in central collisions.
- b-jets' suppression < inclusive jets in central.

Double ratio

- b-jets' suppression < inclusive jets in central.
- Both effects could reduce b-jet energy loss.

Summary

- Quarkonium:
 - Sequential suppression for the three Y states observed.

Summary

- Open heavy flavor and hard-probes:
 - c muon more suppressed than b at lower $p_{\rm T}$.
 - HF back-to-back muon pairs: no significant open angle broadening observed.
 - *b*-jets less suppressed than inclusive jets in central collisions.

Backup

Y: Comparison with models

Comparison with models

Comparison with models

