Inclusive and (non) prompt J/ ψ production in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV with ALICE

Himanshu Sharma On behalf of the ALICE Collaboration

International Conference on High Energy Physics, Bologna 6-13 July 2022

INSTYTUT FIZYKI JĄDROWEJ IM. HENRYKA NIEWODNICZAŃSKIEGO POLSKIEJ AKADEMII NAUK KRAKOW

Inclusive J/ ψ production in AA collisions

- Excellent probe of the deconfined medium, quark-gluon plasma (QGP), produced in high energy nuclear collisions
 - \circ **Dissociation** of charmonium states, such as J/ψ , in the hot nuclear medium

A Rothkopf, Phys. Rept. 858 1-117, T Matsui & H Satz Phys. Lett. B 178 (1986) 416-422

Recombination of charm and anti-charm quarks at the LHC energies

P Braun-Munzinger and J Stachel Phys.Lett. B490 (2000) 196-202, R Thews et al Phys.Rev.C 63:054905

P Braun-Munzinger and J Stachel, Nature volume 448, pages302-309 (2007)

himanshu.sharma@cern.ch | ICHEP 2022 ALICE Collaboration | 09.07.2022 | 2/13

Inclusive J/ ψ production in AA collisions

- Excellent probe of the deconfined medium, quark-gluon plasma (QGP), produced in high energy nuclear collisions
 - \circ **Dissociation** of charmonium states, such as J/ψ , in the hot nuclear medium

A Rothkopf, Phys.Rept. 858 1-117, T Matsui & H Satz Phys.Lett.B 178 (1986) 416-422

Recombination of charm and anti-charm quarks at the LHC energies

P Braun-Munzinger and J Stachel Phys.Lett. B490 (2000) 196-202, R Thews et al Phys.Rev.C 63:054905

• Parton's mass dependent energy loss within the medium \Rightarrow transport properties of the QGP **Non-prompt J/** ψ : sensitive to the interaction of b quarks with the medium

himanshu.sharma@cern.ch | ICHEP 2022 ALICE Collaboration | 09.07.2022 | 3/13

Inclusive J/ ψ production in ALICE

Central barrel detectors 1) ITS

- $|\eta| < 0.9$
- Tracking
- Primary and secondary B vertex reconstruction

2) TPC

- $|\eta| < 0.9$
- Tracking
- Particle identification

Excellent tracking and PID capabilities down to very low momentum

BR (J/ ψ \rightarrow ℓ $^{+}\ell$ $^{-}$) ~ 5.9%

- Inclusive J/ ψ measurement down to p_{τ} = 0 GeV/c at mid and forward rapidity
- Prompt and non-prompt J/ ψ separation at midrapidity, down to p_{τ} = 1.5 GeV/c in Pb-Pb collisions

V0

- $\odot 2.8 < \eta < 5.1 \& -3.7 < \eta < -1.7$
- Trigger
- Collision centrality determination
- Background rejection

Muon spectrometer

- $\odot 2.5 < y < 4$
- Muon trigger
- \odot Muon tracking down to very low p_{τ}

See other ALICE talks on **Quarkonium** by

- Raphaelle Bailhache, 7 July @ 18:30
- Theraa M A Tork, 8 July @ 18:35
- Biswarup Paul, 9 July @ 9:35
- Maurice Coquet, 9 July @ 11:15
- Yanchun Ding, 9 July @ 10:10

09.07.2022 4/13

Inclusive J/ ψ production in p–Pb collisions

- Quantification of cold nuclear matter (CNM) effects
- ullet Suppression of prompt and inclusive J/ ψ production at low ${m
 ho}_{\!\scriptscriptstyle {
 m T}}$
- Hints of larger modifications for prompt J/ ψ compared to non-prompt J/ ψ at low $p_{\rm T}$
- Models including various CNM effects, such as energy loss and nuclear shadowing, describe the data

Nuclear Modification factor

$$R_{\rm pA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \cdot \frac{dN_{\rm pA}/dp_{\rm T}}{dN_{\rm pp}/dp_{\rm T}}$$

R_{pA} = 1 ⇒ pA behaves as scaled pp
 R_{pA} ≠ 1 ⇒ modified production in pA in comparison to pp

Inclusive J/ ψ production in Pb–Pb collisions

- Modifications observed for inclusive J/ψ production at mid and forward rapidity
- Suppressed production for p_T > 5 GeV/c ⇒
 Dissociation and energy loss effects at play
- Lower suppression for $p_T < 5 \text{ GeV/}c$, in particular at midrapidity compared to forward rapidity \Rightarrow consistent with J/ψ regeneration
- Models including J/ ψ regeneration throughout the medium evolution (TAMU) or at the phase boundary (SHM), describe the $R_{\Delta\Delta}$ at low $p_{\rm T}$

SHM: Andronic et al: Phys. Lett. B797 (2019) 134836 TAMU: Du X and Rapp R: <a href="https://pubs.aps.com/nus/

Nuclear Modification factor

$$R_{\mathrm{AA}}(p_{\mathrm{T}}) = rac{1}{\langle N_{\mathrm{coll}}
angle} \cdot rac{dN_{\mathrm{AA}}/dp_{\mathrm{T}}}{dN_{\mathrm{pp}}/dp_{\mathrm{T}}}$$

R_{AA} = 1 ⇒ Pb-Pb behaves as scaled pp
 R_{AA} ≠ 1 ⇒ modifications of the production in Pb-Pb by medium

himanshu.sharma@cern.ch | ICHEP 2022

Non-prompt J/ ψ fractions in Pb–Pb collisions

- Non-prompt J/ ψ fractions ($f_{\rm B}$) are measured down to very low $p_{\rm T}$ in central and semi-central collisions at midrapidity
- Larger contribution of non-prompt J/ ψ with increasing $p_{_{\rm T}}$
- ALICE measurements consistent with CMS measurements in the overlapping $p_{\rm T}$ region

himanshu.sharma@cern.ch | ICHEP 2022 ALICE Collaboration | 09.07.2022 | 7/13

(Non) Prompt J/ ψ production in Pb–Pb collisions

- In peripheral and semi-central collisions, similar modifications for prompt and non-prompt ${\rm J}/\psi$ production
- In the most central collisions, prompt J/ψ production significantly less suppressed in comparison to non-prompt J/ψ

himanshu.sharma@cern.ch | ICHEP 2022 | 8/13

(Non) Prompt J/ ψ production in Pb-Pb collisions

- p_T > 5 GeV/c: Sizable suppression observed for both prompt and non-prompt J/ ψ ; strongest effects observed in the most central collisions
- p_T < 5 GeV/c: Increasing trend of prompt J/ ψ R_{AA} moving towards low p_T ; more evident in central collisions \Rightarrow consistent with J/ ψ regeneration scenario
 - o In the most central collisions: hints of $R_{AA}^{prompt J/\psi} > R_{AA}^{Non-prompt J/\psi}$ in the lowest p_T interval

(Non) Prompt J/ ψ production in Pb–Pb collisions

- Prompt & non-prompt J/ ψ $R_{\rm AA}$ in agreement with ATLAS and CMS measurements in the overlapping $p_{\rm T}$ ranges
- Similar R_{AA} values for non-prompt J/ ψ and non-prompt D⁰
- Prompt J/ ψ $R_{\rm AA}$ described by models including quarkonium dissociation (regeneration at the phase boundary) at high (low) $p_{\rm T}$
- Non-prompt J/ ψ $R_{\rm AA}$ consistent with models implementing collisional + radiative energy loss for $p_{\rm T}$ > 5 GeV/c

himanshu.sharma@cern.ch | ICHEP 2022 | 10/13

D^0 -to-J/ ψ ratio in Pb-Pb collisions

- Sensitive to hadronization mechanism for open and hidden charm production
- Centrality dependence of the ratio is explained by larger charm fugacity in most central collisions according to SHMc predictions

himanshu.sharma@cern.ch | ICHEP 2022 ALICE Collaboration | 09.07.2022 | 11/13

Summary

- $R_{\rm AA}$ of inclusive and (non) prompt J/ ψ measured in Pb–Pb collisions using full statistics collected during LHC Run 2
- Prompt J/ ψ : R_{AA} measurements are compatible with an interplay between dissociation and regeneration mechanism, stronger effects in central collisions:
 - J/ ψ regeneration dominant at low $p_{_{\rm T}}$, dissociation effects at high $p_{_{\rm T}}$
- Non-prompt J/ ψ : Consistent with b-quark energy loss at high $p_{_{\rm T}}$

himanshu.sharma@cern.ch | ICHEP 2022 ALICE Collaboration | 09.07.2022 | 12/13

Outlook for LHC Run 3

- Increase by a factor of 10 compared to Run 2 for the integrated luminosity in Pb-Pb collisions
- Upgraded ITS: Improved impact parameter resolution by factor of 3 (5) in transverse (longitudinal) direction, improved vertexing and tracking precision
- Muon Forward Tracker will enable prompt/non-prompt charmonia separation at forward rapidity (-3.6 < η < -2.5) in the dimuon decay channel
- More ALICE talks on LHC Run 3:
 - Robert Munzer, 7 July @ 9:00
 - Aimeric Landou, 8 July @ 9:18

ALICE is ready for the LHC Run 3, with an exciting physics program rich in many new quarkonium measurements... stay tuned!

himanshu.sharma@cern.ch | ICHEP 2022 | 13/13

Thank you

Backup

<Npart> and centrality in Pb-Pb

Centrality	$\langle T_{\rm AA} \rangle ({ m mb}^{-1})$	$\langle N_{ m part} angle$	ALICE Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, $2.5 < y < 3$, $0 < p_{T} < 12 \text{ GeV}/c$
*			$-\frac{C}{1.4}$ ALICE Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 2.5 < y < 3, 0 < p_{T} < 12 GeV/c $\frac{1}{2}$
0-5%	26.08 ± 0.18	383.40 ± 0.57	1.2 Transport (Du and Rapp) Statistical hadronization (Andronic et al.)
0-10%	20.44 ± 0.17	331.20 ± 1.03	1
10-20%	14.4 ± 0.13	262.00 ± 1.15	0.8
20-30%	8.77 ± 0.10	187.90 ± 1.34	0.8
30-40%	5.09 ± 0.08	130.80 ± 1.33	0.6
40-50%	2.75 ± 0.05	87.14 ± 0.93	0.4
50-70%	0.98 ± 0.02	42.65 ± 0.63	0.2 Inclusive J/ $\psi \rightarrow \mu^+\mu^-$
70-90%	0.016 ± 0.001	11.34 ± 0.13	[]
2 			0 50 100 150 1200 250 300 350 400
			ALI-DER-341769 ALI-DER-341769
			50-90% 40-50% 30-40% 20-30% 10-20% 0-10%

ICHEP 2022 ALICE Collaboration 09.07.2022 16/13

Inclusive J/ ψ production in Pb-Pb collisions

- Modifications observed with respect to pp, at central and forward rapidity
- $R_{\rm AA}$ increases from peripheral to the most central collisions at midrapidity, described by the models including J/ψ dissociation and regeneration mechanism
- R_{AA} exhibits a flat behaviour at forward rapidity

Charmonium Models in Pb-Pb

Comover model

- J/ ψ suppression and dissociation via co-moving
- ullet Partonic/hadronic interaction of J/ ψ with medium
- Dissociation ∏ density of comovers
- Regeneration □ c quark cross section

 Π = "depends on"

Transport models

- Boltzmann equation
- With dissociation and regeneration effects
- Idea hydrodynamics

TM1 (Rapp et al)

- Dissociation rate Π LQCD inspired binding energy of charmonia
- Regeneration, c quarks reach stat equilibrium after relaxation time of few fm/c

TM2 (Zhou et al)

- Dissociation rate ∏ r² charmonia
- Regenration, same cross section as dissociation, thermalized distribution of c quarks

himanshu.sharma@cern.ch | ICHEP 2022 | 18/13

Charmonium Models in Pb-Pb

SHM

- HQ produced via hard parton scatterings initially
- All J/ ψ melt in medium
- Form bound states at the phase boundary according to thermal weights of the bound state
- Core-corona model, core high density medium (QGP), corona - < 10% density of core, pp like conditions

At higher $p_{\scriptscriptstyle T}$, lack of description might be related to:

- ullet Underestimate the survived primary J/ ψ yield during QGP phase
- Hydro inspired freezeout hypersurface underestimate the radial flow of c quarks

himanshu.sharma@cern.ch | ICHEP 2022 ALICE Collaboration | 09.07.2022 | 19/13

Charmonium Models in p-Pb

- Coherent energy loss with and without including nuclear shadowing according to EPPS09 nPDF
- EPPS16 and nCTEQ are set of nPDFs
- ullet Bayesian re-weighting approach employing J/ ψ measurements from LHCb to constraint the calculations
- For non-prompt J/ ψ , FONLL calculations included with nuclear shadowing effects according to EPPS16 nPDFs

