Searching for jet quenching effect using high multiplicity inclusive and semi-inclusive jets in pp collisions with ALICE

Kotliarov Artem for the ALICE Collaboration Nuclear Physics Institute of the Czech Academy of Sciences

Signatures of QGP-like formation in small-collision systems

How do QGP signatures evolve with the system size?

- 1. Enhancement of strange hadron production in high-multiplicity pp collisions
- 2. Pronounced ridge structures in high-multiplicity pp collisions
- 3. Non-zero v_2 coefficient for low and high- p_T particles in p-Pb collisions

Do we observe signs of jet quenching in small systems?

Measurement of nuclear modification factor in p-Pb collisions

Yield suppression of high- $p_{\rm T}$ inclusive jets/hadrons relative to minimum bias pp

 $R_{\rm AA} = \frac{{\rm d}^2 N_{\rm AA}/{\rm d}y {\rm d}p_{\rm T}}{\langle T_{\rm AA} \rangle \, {\rm d}^2 \sigma_{\rm pp}^{\rm INEL}/{\rm d}y {\rm d}p_{\rm T}}$

- Limited precision of $\langle T_{AA} \rangle$ for centrality biased events
- Undefined Glauber scaling for high-multiplicity pp collisions

No conclusive results on jet quenching in small systems

 \rightarrow more sensitive approaches are needed

ALICE, PLB 827 (2022) 136943

Semi-inclusive measurements of hadron-jet acoplanarity

- Applicable in pp collisions
- Equality in case of no nuclear effects
- Self-normalized observable, reference spectrum has no dependence on $\langle T_{AA} \rangle$

Hadron-jet acoplanarity measurements in Pb-Pb collisions → talk by <u>Yongzhen Hou</u> on 8 July at 3:05 pm, "Heavy Ions" session

Event activity selection in pp collisions at $\sqrt{s} = 13$ TeV

--- ALICE Data

---- PYTHIA8 Monash 2013

- Minimum-bias (MB) trigger $\rightarrow L_{\text{Int}} \approx 32 \text{ nb}^{-1}$
- High-multiplicity (HM) trigger $\rightarrow L_{\text{Int}} \approx 10^4 \text{ nb}^{-1}$

Offline event activity (EA) selection:

 $VOM = VOA + VOC \rightarrow sum of signals$

 10^{-2}

ALICE, Eur. Phys. J.C 82 (2022) 6, 514

ALICE pp $\sqrt{s} = 13 \text{ TeV}$

Inclusive jet yield in different multiplicity classes

- Jet $p_{\rm T}$ corrected for underlying events and instrumental effects
- Event activity bias has a mild effect on the shape for $p_{T, iet} > 20 \text{ GeV}/c$
- Jet yield increases with event activity bias

Jet production ratio using different jet R

Self-normalized jet production vs self-normalized multiplicity

- Non-linear rising with multiplicity observed for jet production in midrapidity, similar trend as for J/ψ^{-1}
- Electrons from W decay follow linear trend, talk by Mingrui Zhao on 7 July at 5.30 pm, "Heavy Ions" session
- PYTHIA 8 overestimates data at high particle multiplicities

¹ALICE, Phys. Lett. B 810 (2020)

Semi-inclusive $p_{\rm T}$ distribution of recoil jets

- Jet $p_{\rm T}$ corrected for underlying event density
 - $p_{\mathrm{T,jet}}^{\mathrm{ch}} = p_{\mathrm{T,jet}}^{\mathrm{raw,ch}} \rho A_{\mathrm{jet}}$
- Negative and low $p_{\rm T}$ region

 \rightarrow contribution of combinatorial background jets

- Yield of combinatorial jets has no dependence on p_{T} of TT
- Data-driven approach for removal of uncorrelated jet yield

$$\Delta_{\text{recoil}} = \left. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jets}}}{dp_{\text{T, jet}}^{\text{ch}} d|\Delta\varphi|} \right|_{\text{TT}\{20,30\}} - \left. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jets}}}{dp_{\text{T, jet}}^{\text{ch}} d|\Delta\varphi|} \right|_{\text{TT}\{6,7\}}$$

 $TT{x,y} \rightarrow trigger-track with p_T \in (x, y) GeV/c$

ALICE

Semi-inclusive azimuthal distribution of recoil jets

Measurements of hadron-jet acoplanarity with Δ_{recoil} (Δq

Fully corrected data:

- Substantial suppression of jets back-to-back w.r.t. TT in HM collisions
- Broadening of HM acoplanarity distribution with respect to MB
- Resembles jet quenching effects

PYTHIA 8 Monash simulation:

- V0M = # of charged, final state particles within V0A & V0C acceptances
- Does not account for jet quenching effects
- Exhibits qualitatively similar features as experimental data

What can we learn from PYTHIA simulation about recoil jets in MB and HM events?

PYTHIA 8 simulation: recoil jet pseudorapidity distribution

• Most likely HM trigger is induced by high- p_{T} recoil jets

 $\leftrightarrow HM \ trigger \ imposes \ substantial \ bias \ on \ recoil \ jets$

• Lower enhancement in V0A is caused by asymmetric coverage of V0 detectors

* Grey boxes represent acceptances of V0 detectors

PYTHIA 8 simulation: number of high- p_{T} recoil jets vs event activity

Summary

No jet quenching effects observed in high-multiplicity pp collisions. Potentially, signal is too small

Inclusive jet measurements

- Jet production **rises** with event activity
- Event activity bias has weak impact on the spectrum slope for high- p_{T} jets

Semi-inclusive jet measurements

- Broadening and suppression of back-to-back hadron-jet correlation in HM events relative to MB
- PYTHIA quantitatively reproduces the shape \rightarrow jet quenching signal is not genuine
 - HM trigger enhances probability to measure high- $p_{\rm T}$ recoil jets in V0 acceptance
 - \circ Bias towards multi-jet final state induced by HM trigger \rightarrow obscures possible jet quenching signal
 - $\circ~$ Multi-jet final state \rightarrow generic bias for HM measurements in small systems

Thank you for your attention!