

Quarkonium production and elliptic flow in small systems measured with ALICE

ICHEP2022, 6-13 July, Bologna

Maurice Coquet on behalf of the ALICE Collaboration, 9 July CEA-Saclay/Irfu/DPhN

Quarkonium in small systems: testing QCD at its limits

- Quarkonium production involves different scales and processes:
 - hard-scales: heavy-quark production in initial hard scattering → test pQCD
 - soft-scales: binding of pairs into a colorless final state → probe non-perturbative physics

 Different models: e.g. Colour Evaporation Model (CEM), Non-Relativistic QCD (NRQCD), ...
 [Lansberg Phys.Rept. 889 (2020)] High-multiplicity events to probe collectivity

Striking similarities for a few observables between small systems (high-multiplicity pp, p-Pb) and Pb-Pb collisions
 [ALICE, PLB 719 29 (2013)] [ALICE, Nature Phys 13, 535-539 (2017)]

Study flow observables for heavy flavors: J/ψ elliptic flow in small systems

 Reference systems to study heavy-ion collisions and the quark-gluon plasma

See other ALICE quarkonium talks by

Raphaelle Bailhache (7 July -18:25) Theera Tork (8 July - 18:35) Biswarup Paul (9 July - 09:35) Yanchun Ding (9 July - 10:10) Himanshu Sharma (9 July - 12:05)

A Large Ion Collider Experiment

 $J/\psi \rightarrow e^+e^-$ (|y| < 0.9) Distinction between J/ψ prompt (produced at primary vertex) and non-prompt (b-hadron decays)

Inclusive J/ ψ measured down to p_T =0, for both midrapidity and forward rapidity

Inclusive charmonium production at forward rapidity in pp

ψ(2S)

$\psi(2S)$ -to-J/ ψ cross section ratio in pp

- ICEM + FONLL describes well the ratio of $\psi(2S)$ -to-J/ ψ cross sections
 - ightarrow Ratio increases with p_{T}
 - → NRQCD calculation by Butenschön *et al.* overpredicts it at 13 TeV
- No dependence on collision energy seen in data, in agreement with ICEM+FONLL

FONLL : Cacciari, JHEP 05 (1998) 007

NRQCD: Butenschoen, Phys. Rev. Lett. 106 (2011) 022003

ICEM: Cheung, Phys. Rev. D 98 no. 11, (2018) 114029

Inclusive quarkonium production in pp at forward rapidity

ICEM: Cheung, Phys. Rev. D 98 no. 11, (2018) 114029

- ICEM describes well Y(ns) cross sections as a function of rapidity, ALICE and CMS data cover wide rapidity region 0<y<4 [CMS coll. Phys.Lett.B 790 (2019) 270-293]

 FONLL: Cacciari, JHEP 05 (1998) 007
- Decrease at most forward rapidity
- Cross section rises with collision energy for different quarkonium species, well described by ICEM

Prompt & non-prompt J/ψ at midrapidity in pp

Models describe well the prompt (NRQCD,ICEM) and non-prompt J/ ψ (FONLL) differential cross sections at midrapidity, at $\sqrt{s=13~TeV}$.

[JHEP 03 (2022) 190]

NRQCD+CGC: good agreement down to low $p_{\rm T}$ ICEM: good at low $p_{\rm T}$, slightly overshoots at high $p_{\rm T}$ NRQCD + $k_{\rm T}$ factorization: slightly overestimates data at low $p_{\rm T}$

Fraction of the non-prompt J/ ψ : f_{P}^{visible} ($\sqrt{s}=13$ TeV, |y| < 0.9, $p_{T} > 1$ GeV/c) = 0.185 ± 0.015(stat.) ± 0.014(syst.)

FONLL: Cacciari, JHEP 05 (1998) 007 NRQCD CS+CO: Butenschoen, Phys. Rev. Lett. 106 (2011) 022003 NRQCD: Ma, Phys. Rev. Lett. 106 (2011) 042002

NRQCD+CGC: Ma, Phys. Rev. Lett. 113 no. 19 (2014) 192301 ICEM: Cheung, Phys. Rev. D 98 no. 11, (2018) 114029 NRQCD+k_r fact.: Lipatov, Phys. Rev. D 100 no. 11, (2019) 114021

Prompt & non-prompt J/ψ at midrapidity in pp

[JHEP 03 (2022) 190]

Similar conclusions for datamodel comparison for $\sqrt{s=5.02 \text{ TeV}}$ data.

Good agreement with corresponding measurements from ATLAS and CMS in the overlapping p_{T} range

[CMS coll. Eur.Phys.J.C 77 (2017) 4, 269] [ATLAS coll. Eur.Phys.J.C 78 (2018) 3, 171]

Fraction of the non-prompt J/ψ :

 $f_{\text{R}}^{\text{visible}}$ ($\sqrt{\text{s}=5.02 \text{ TeV}}, |y| < 0.9, p_{\text{T}} > 2 \text{ GeV/c}$) = 0.157 ± 0.023(stat.) ± 0.016(syst.)

FONLL: Cacciari, JHEP 05 (1998) 007 NRQCD CS+CO: Butenschoen, Phys. Rev. Lett. 106 (2011) 022003 NRQCD: Ma, Phys. Rev. Lett. 106 (2011) 042002

NRQCD+CGC: Ma, Phys. Rev. Lett. 113 no. 19 (2014) 192301 ICEM: Cheung, Phys. Rev. D 98 no. 11, (2018) 114029 NRQCD+k_T fact.: Lipatov, Phys. Rev. D 100 no. 11, (2019) 114021

J/ψ elliptic flow in small systems

- Collective effects for heavy flavors in small systems?
 - \rightarrow can be accessed by studying flow observables, e.g. elliptic flow coefficient v_2 (which quantifies response to initial collision geometry)
- First J/ψ elliptic flow measurement in pp collisions at LHC
 - No collective behavior observed for the J/ψ in high multiplicity pp collisions at the LHC, within current uncertainties

J/ψ elliptic flow in small systems

- Non-flow effects (e.g. jets) suppressed by subtracting low-multiplicity yields from high-multiplicity yields
- p–Pb: [PLB 780 (2018) 7-20]
 - Similar flow as in Pb-Pb for $p_{\rm T} > 4$ GeV/c \rightarrow common mechanism at play ?
 - Transport model, which describes v₂ in Pb-Pb collisions, does not reproduce the p-Pb data [X.Du Nucl.Phys.A 943 (2015) 147-158]
 - Other possible explanations for correlations among produced particles: e.g. CGC ?
 [Zhang et al. Phys.Rev.D 102 (2020) 3, 034010]
- Ordering of J/ ψ elliptic flow with system size: $\mathbf{v_2}^{J/\psi}(\mathbf{pp}) < \mathbf{v_2}^{J/\psi}(\mathbf{pPb}) < \mathbf{v_2}^{J/\psi}(\mathbf{PbPb})$

Conclusion

- Testing production mechanisms
 - \rightarrow Quarkonium production in pp collisions well described by models (small tensions when considering cross section ratios)
 - \rightarrow Hardening of J/ ψ p_{T} spectrum with collision energy
 - $\rightarrow \psi(2S)$ -to-J/ ψ ratio: increases with p_{T} , independent of collision energy

- Collectivity in small systems
 - ightarrow First elliptic flow measurement for J/ ψ in high multiplicity pp collisions: No evidence for positive J/ ψ elliptic flow within uncertainties
 - \rightarrow J/ ψ collective flow mechanism in p-Pb still to be understood
 - \rightarrow Ordering of J/ ψ elliptic flow with system size

Perspectives for Run 3:

- Increased statistics
 - → larger multiplicities can be achieved
 - \rightarrow precise measurements expected in small systems, also for bottomonia
- Separation of prompt and non-prompt charmonia at forward rapidity with the Muon Forward Tracker (MFT)

Inclusive charmonia production cross sections at forward rapidity in pp

J/ψ, ψ(2S) → μ^+ μ^- (2.5 < y < 4) Down to p_T =0 GeV/c, \sqrt{s} = 5.02, 7, 8, and 13 TeV

[arXiv:2109.15240]

- New measurement done at 5 TeV (10 times the statistics available in earlier publication)
- Cross sections described by ICEM + FONLL (for $p_T > 3$ GeV/c) at all energies
- Hardening of J/ψ p_T spectrum at 13 TeV compared to lower energies:
 - Increase of prompt J/ ψ mean $p_{\rm T}$ + Increase of non-prompt J/ ψ fraction at high $p_{\rm T}$ (FONLL)

Multiplicity-dependent J/ψ production in pp

See talk by Theera Tork (8 july 2022 at 18:35)

 J/ψ production measurement in two rapidity ranges:

Electron decay channel: $J/\psi \rightarrow e^+e^-$ (|y| < 0.9)

Muonic decay channel: $J/\psi \rightarrow \mu^+ \mu^-$ (2.5 < y < 4) With \sqrt{s} = 5.02 TeV, 7 and 13 TeV

- Forward rapidity region:
 - Compatible with linear dependence of J/ψ selfnormalized yield on multiplicity
 - Three collision energies give compatible results
- Midrapidity region:
 - Faster-than-linear increase of J/ ψ self-normalized yield with the multiplicity
 - Results using multiplicity selection based on the SPD and V0 detectors are compatible within the uncertainties

Normalized charged particle multiplicity

Multiplicity-dependent J/ψ production in pp

See talk by Theera Tork (8 july 2022 at 18:35)

Comparaison with theoretical calculations

- Forward rapidity (left and middle) :
 - CPP, 3-Pomeron and percolation models in good agreement with linear increase
 - CGC+ICEM overpredicts results
- Midrapidity (right) :
 - Faster-than-linear increase predicted in models by Color string reconnection, gluon saturation, ... → different mechanisms predict similar behavior

$\psi(2S)$ multiplicity dependent production in small systems

- $\psi(2S)$ production measurement at fwd-y, charged particle multiplicity at mid-y in pp:
 - \rightarrow Linear rise of $\psi(2S)$ production, self-normalized $\psi(2S)/J/\psi$ compatible with unity
 - → production at forward rapidity independent of the charmonium state + collision energy

$\psi(2S)$ multiplicity dependent production in small systems

See talk by Theera Tork

- $\psi(2S)$ production measurement at fwd-y, charged particle multiplicity at mid-y in pp:
 - \rightarrow Linear rise of $\psi(2S)$ production, self-normalized $\psi(2S)/J/\psi$ compatible with unity
 - → production at forward rapidity independent of the charmonium state + collision energy
- PYTHIA models with/without color reconnections in agreement with data at low multiplicity, underestimates at high multiplicity

J/ψ pair production in pp at 13 TeV

- Constrain long-distance matrix elements of NROCD models
- Different sensitivity to feeddown from excited stated then single J/ψ production

Insights on double parton scattering (DPS) and associated production

Consistency with LHCb cross section measurement observed, with two caveats:

- Prompt J/ψ measured in LHCb, inclusive J/ψ in ALICE
- Slightly different rapidity ranges