Production of isolated photons and studies of photon-tagged jets in PbPb and pp at 5.02 TeV with CMS

Molly Taylor

Massachusetts Institute of Technology

for the CMS collaboration

ICHEP 2022

July 8, 2022

Jet quenching in heavy ion collisions

- QGP is formed when heavy ions collide
- Hard scattered partons interact with QGP and lose energy \rightarrow jet quenching
- Studies of jet quenching can probe medium properties, such as transverse momentum broadening
- In dijet events there is a "surface bias" from jet p_T requirements, since both jets lose energy

Using photon-tagged jets

• Photon does not interact strongly with QGP

=> tags initial recoil parton p_T

- No surface bias from photon selection
- Good handle on q/g fraction of recoil parton

Isolated photon introduction

Isolated photons are those with generator-level energy < 5 GeV in $\Delta R = 0.4$ cone Measurement of isolated photon spectrum and R_{AA} CMS 2.76 TeV Isolated Photon R_{AA}

- Establish that we understand photon production in PbPb collisions
- Verify that photons are not significantly affected by the QGP
- Provides a direct way to test perturbative QCD and nPDFs

CMS $\sqrt{s_{NN}}$ =2.76TeV L_{int}(PbPb)= 6.8 μb^{-1} L_{int}(pp)= 231 nb⁻¹

.___ R_₄₄ (0-10%)

Isolated photon spectra

Isolated photon R_{AA}

- Dramatic improvement over previous measurement
- Photon production in PbPb is consistent scaled PP
 - Photons do not interact significantly in the QGP
 - Isolated photons can tag initial recoiling jet energy
- Need to reduce systematics to reach next level of accuracy

Photon-tagged jet results

Molly Taylor

6

Photon-jet azimuthal correlations

- Look at alignment of photon and recoiling jet
- PbPb result consistent with smeared PP data
- No significant modification at large angles
- No near side enhancement
- Is p_T broadening overshadowed by initial state radiation?

Photon-jet azimuthal correlations theory

- The models don't show significant broadening effects compared to PP ISR overshadows the effect?
- Will need increased statistics at small $\Delta \phi_{j\gamma}$ to constrain theory and see if we detect p_T broadening

Photon-jet momentum imbalance

- Select jets with $p_T^{jet} > 30$ GeV and $\Delta \phi_{i\nu} > 7\pi/8$
- Mean and yield shift to lower values in PbPb due a larger fraction of jets losing energy falling below the acceptance threshold
- Jets may lose more energy in central collisions because they travel longer or because QGP is denser photon p_T

jet p_T

Photon-tagged jet fragmentation function

- ξ_T^{γ} characterizes fragmentation wrt photon kinematics
- Enhancement of low p_T particles and which may originate from medium response, higher p_T particles losing energy, or soft gluon radiation

10

- Depletion of high p_T particles in central collisions is direct evidence of jet quenching
- More significant effect than ξ^{jet} due to jet quenching effects

Molly Taylor

Photon-tagged jet fragmentation function theory

- Small excess of low p_T particles and depletion of high p_T particles
- Hybrid and CoLBT-hydro describe trend, both include medium back-reaction
- Back reaction improves agreement of Hybrid with data, indicating medium recoil is crucial to capture data

Photon-tagged jet radial momentum density

- Shows how the how the jet pT is distributed transverse to the jet axis, in both systems bulk is in core
- Small relative modification of jet core & enhancement of particles away from jet axis \rightarrow broadening PRL 122 (2019) 152001

12

Molly Taylor

Photon-tagged jet radial momentum density theory

Molly Taylor

SCET_G

- EFT of QCD
- Glauber gluons mediate medium-jet interactions
- Includes medium modification but not medium response

LBT

- Monte Carlo model
- Includes medium response

• Both models describe small relative modification of core & enhancement of particles away from jet axis

13

PRL 122 (2019) 152001

Summary

- Isolated photon production in PbPb events is not significantly modified by the QGP
 - Isolated photons can serve as reliable tags for the hard scattering
- Photon-jet results show hints of where energy loss is occurring
- Looking further at Z/γ -hadron correlations to learn about medium response
- Working on new photon-jet observable the jet axis decorrelation δ_{jj}
- Excited to follow up with Run 3 data!

<u>JHEP 2020, 116 (2020)</u>

MITHIG group's work was supported by US DOE-NP

PRL 121 (2018) 242301

Backup

Molly Taylor

PLB 712 (2012) 176

CMS

Prompt photon production

Molly Taylor

Figure: PLB 317 (1993) 250256

Isolation requirements and efficiency correction

Photon selections:

- $25 < E_T^{\gamma} < 200$ GeV and $|\eta| < 1.44$
- Reject if close to electron candidate track with $p_T > 10 \text{ GeV}$

Isolation selections:

- HCal/ECal energy ratio < 0.1
- Shower shape $\sigma_{\eta\eta} < 0.01$
- sumIso (energy within $\Delta R = 0.4$) < 1 GeV Efficiency correction:
- Efficiency of reconstructing photon candidates
- Selection efficiency

Molly Taylor

• Trigger efficiency

Results unfolded to correct for detector resolution

<u>IHEP 2020, 116 (2020)</u>

 E_{T}^{γ} [GeV]

 E_{T}^{γ} [GeV]

Selection Efficiency

Purity subtraction

- After isolation requirements and electron rejection, dominant background is from neutral meson decay
- Use modified second moment of ECal distribution
- Most decay photons have larger values of $\sigma_{\eta\eta}$
- Estimate purity with a template fit method and subtract

<u>JHEP 2020, 116 (2020)</u>

Molly Taylor

Isolated photon systematic uncertainties

- Large source of uncertainty is the photon purity subtraction
- Residual photon energy scale also has a large effect, found using Z boson peak
- Pileup in PP collisions also adds significant uncertainty

	PbPb centrality				
Source	$0\!-\!100\%$	$0\!\!-\!\!10\%$	10 – 30%	30–50%	50100%
Purity	6 - 9%	7 - 13%	3 - 12%	4-8%	$2\!-\!7\%$
Electron rejection	1–2%	$0\!\!-\!\!10\%$	1–6%	$0\!\!-\!\!3\%$	0–7%
Pileup	$0\!\!-\!\!10\%$	$0\!\!-\!\!10\%$	$0\!\!-\!\!10\%$	$0\!\!-\!\!10\%$	$0\!\!-\!\!10\%$
Energy scale	$2\!-\!4\%$	3–6%	1–9%	2–7%	1 - 10%
Energy resolution	$0\!\!-\!\!3\%$	1–7%	0–9%	1–8%	$2\!-\!6\%$
Unfolding	$1\!-\!4\%$	1–9%	1–5%	$0\!\!-\!\!3\%$	$0\!\!-\!\!1\%$
Efficiency	$0\!\!-\!\!2\%$	$0\!\!-\!\!5\%$	$0\!\!-\!\!2\%$	$0\!\!-\!\!1\%$	$0\!\!-\!\!2\%$
Integrated luminosity	2.3%	2.3%	2.3%	2.3%	2.3%
$\mid T_{\mathrm{AA}}$	4%	3%	4%	6%	11%
Total	$5 extstyle{-}12\%$	10 - 17%	6 - 18%	$7 ext{-}15\%$	7 – 15%

JHEP 2020, 116 (2020)

ICHEP 2022

Object selections and analysis procedure

- Select events with $p_T^{\gamma} > 40$ GeV, $|\eta^{\gamma}| < 1.44$
- Cluster anti-kT R = 0.3 jets with FASTJET
- Subtract underlying event for PbPb collisions
- Find isolated photons with UE-subtracted energy sum $< 1 \mbox{ GeV}$ in R = 0.4 cone
- Reject photons close to electron tracks with $p_T^e > 10 \text{ GeV/c}$
- Remove decay & fragmentation photons with purity subtraction
- Pair photons and jets to find photon-jet events
- Subtract combinatorial jet background via event mixing technique using MB events

ICHEP 2022

PLB 785 (2018) 14

Mixed-event background subtraction

- Consider correlations between photon and all jets in event
- Subtract contributions from uncorrelated background jets and tracks
 - Statistically identical to jets in MB events, also uncorrelated
- Estimate background by embedding photon in MB events
- Done on aggregated basis

Photon-jet momentum imbalance theory comparison

Molly Taylor

Photon-jet mean momentum imbalance

Molly Taylor

24

PLB 785 (2018) 14

Photon-jet fragmentation function

Molly Taylor

25

PRL 121 (2018) 242301

Photon-jet fragmentation function theory comparison

26

Molly Taylor

$$\boldsymbol{\xi^{jet}} = \ln \frac{\left| \vec{p}^{jet} \right|^2}{\vec{p}^{trk} \cdot \vec{p}^{jet}}$$

PRL 121 (2018) 242301

Fragmentation function centrality dependence

Molly Taylor

27

