ψ(2S) production and nuclear modification factor in nucleus-nucleus collisions with ALICE

Biswarup Paul University and INFN Cagliari (Italy) On behalf of the ALICE Collaboration

XLI International Conference on High Energy Physics Bologna, Italy, 6th – 13th July 2022

Motivation for $\psi(2S)$ measurement in Pb–Pb

- Sequential melting: Differences in the binding energies lead to a sequential melting of the quarkonium states with increasing temperature of the quark-gluon plasma (QGP)
 T. Matsui and H. Satz, PLB 178 (1986) 416

 A Rothkopf, Phys. Rept. 858 (2020) 1-117
- Quarkonium recombination: Increase of Cc̄ production cross section at the LHC energies → Enhanced quarkonium production via recombination at the phase boundary or during the QGP phase

P. Braun-Muzinger, J. Stachel, PLB 490 (2000) 196R. Thews et al, Phys. Rev. C 63 (2001) 054905

ψ(2S) to J/ψ ratio weakly depends on charm production cross section employed as input to the models in Pb–Pb collisions
 → important constraints on models

TAMU: X. Du and R. Rapp, NPA 943 (2015) 147 SHMc: A. Andronic et. al., Nature 561 no. 7723 (2018) 321

$\psi(2S)$ measurements at the LHC energies

• Stronger $\psi(2S)$ suppression observed at high- p_{T} by ATLAS and CMS compared to J/ ψ at $\sqrt{s_{NN}} = 5.02$ TeV

- For complete characterization of $\psi(2S)$ production an extension to low- p_{T} is needed where recombination mechanism is at play
- At low- p_{T} only ALICE Run 1 results available, but large uncertainties prevent a firm conclusion \rightarrow Significantly higher statistics (by a factor of ~11) available in full Run 2 Pb–Pb data at $\sqrt{s_{NN}} = 5.02$ TeV! **ICHEP 2022 Biswarup Paul**

A Large Ion Collider Experiment

For more ALICE quarkonium results, see talks from Raphaelle Marie Bailhache, 7th July at 18.30 Theraa M A Tork, 8th July at 18:35 Yanchun Ding, 9th July at 10:10 Maurice Louis Coquet, 9th July at 11.15 Himanshu Sharma, 9th July at 12:05 Central barrel: J/ $\psi \rightarrow e^+e^-$ (|y| < 0.9)

Electrons reconstructed using ITS and TPC Particle identification: TPC dE/dx

Forward muon arm: J/ ψ , $\psi(2S)$, $\Upsilon(nS) \rightarrow \mu^+\mu^-$ (2.5 < y < 4)

Muons identified and tracked in the muon spectrometer

V0:

(V0A: $2.8 < \eta < 5.1 & V0C: -3.7 < \eta < -1.7$)

Trigger, background rejection and centrality measurements in A-A collisions

→ Inclusive quarkonium measurements are down to zero p_{T}

Biswarup Paul

$\psi(2S)$ reference cross section in pp collisions

- New measurement with 10 times more statistics than earlier publication allows for $p_{\rm T}$ and y-differential studies of $\psi(2S)$
- NRQCD+CGC+FONLL provides a good data description down to zero $p_{\rm T}$
- $\psi(2S)$ -to-J/ ψ ratio shows an increasing trend with p_T and an overall good agreement within uncertainties with theoretical models

```
NRQCD (Butenschon et al): PRL 106 (2011)
022003
NRQCD (Y-Q. Ma et al): PRL. 106 (2011)
042002
NRQCD+CGC (Y-Q. Ma et al): PRL 113 no. 19,
(2014) 192301
ICEM (V. Cheung et al): PRD 98 no. 11, (2018)
114029
FONLL (M, Cacciari et al): JHEP 10 (2012) 137
```

J/ψ in Pb–Pb collisions

- Rise of inclusive J/ ψR_{AA} at low p_T , stronger effect at midrapidity \rightarrow strong signature of recombination
- Models that include regeneration either at the freeze-out (SHMc) or during the medium evolution (TAMU) are both in agreement with data at low $p_{\rm T}$

 \rightarrow not possible to disentangle between the two different regeneration scenarios using J/ ψ only

Centrality dependence of $\psi(2S)$ production in Pb–Pb collisions

- Stronger suppression for $\psi(2S)$ compared to J/ψ
- Flat centrality dependence of $\psi(2S) R_{AA}$ within uncertainties, consistent with $R_{AA} \sim 0.3 0.4$

Centrality dependence of $\psi(2S)$ production in Pb–Pb collisions

- Stronger suppression for $\psi(2S)$ compared to J/ψ
- Flat centrality dependence of $\psi(2S) R_{AA}$ within uncertainties, consistent with $R_{AA} \sim 0.3 0.4$
- TAMU model reproduces the results for both J/ ψ and $\psi(2S)$
- SHMc describes J/ ψ data but tends to underestimate the $\psi(2S)$ result in central Pb–Pb collisions

$p_{\rm T}$ dependence of $\psi(2S)$ production in Pb–Pb collisions

• Stronger suppression at high- $p_{\rm T}$ and increasing trend of $R_{\rm AA}$ towards low- $p_{\rm T}$ for both charmonium states

\rightarrow hint of regeneration

• Good agreement between CMS and ALICE data in the common $p_{\rm T}$ range, regardless of the different rapidity coverage

$p_{\rm T}$ dependence of $\psi(2S)$ production in Pb–Pb collisions

• Stronger suppression at high- $p_{\rm T}$ and increasing trend of $R_{\rm AA}$ towards low- $p_{\rm T}$ for both charmonium states

\rightarrow hint of regeneration

- Good agreement between CMS and ALICE data in the common $p_{\rm T}$ range, regardless of the different rapidity coverage
- TAMU model reproduces the $p_{\rm T}$ dependence for both J/ ψ and ψ (2S)

ICHEP 2022

Centrality dependence of $\psi(2S)$ -to-J/ ψ ratio in Pb–Pb collisions

- Flat centrality dependence of $\psi(2S)$ -to-J/ ψ ratio in ALICE
- NA50 results show a slightly more pronounced centrality dependence
- Indication of larger $\psi(2S)$ -to-J/ ψ ratio in ALICE than in NA50 in central event
- The TAMU model reproduces the cross section ratios over centrality, while SHMc tends to underestimate the ALICE data in central Pb–Pb collisions

TAMU: X. Du and R. Rapp, NPA 943 (2015) 147 SHMc: A. Andronic et. al., Nature 561 no. 7723 (2018) 321

ALI-PREL-523330

Biswarup Paul

$p_{\rm T}$ dependence of $\psi(2S)$ -to-J/ ψ ratio

• The double ratio values indicate a significant suppression of the $\psi(2S)$ relative to J/ ψ , reaching a value of about 0.5 at high $p_{\rm T}$

ALI-PREL-511153

Biswarup Paul

Conclusions and outlook

pp collisions:

- → $\psi(2S)$ cross section and $\psi(2S)$ -to-J/ ψ ratio have been measured at $\sqrt{s} = 5.02$ TeV, with significantly improved precision compared to earlier publication
- → Theoretical models reproduce the $\psi(2S)$ cross section within uncertainties

Pb–Pb collisions:

- → The $\psi(2S)$ is more suppressed than the J/ ψ
- → Comparison of J/ ψ and $\psi(2S) R_{AA}$ with transport model shows a fair agreement within uncertainties
- → Transport model, which includes recombination of charm quarks in the QGP phase, reproduces the $\psi(2S)$ -to-J/ ψ ratio better than SHMc model for central events

Prospects for Run 3/4

- → Significant increase of statistical precision expected with $L_{int} \sim 10 \text{ nb}^{-1}$, thanks to continuous readout
- → The Muon Forward Tracker (MFT) will allow to separate the prompt charmonium from the contribution originating from beauty hadron decays at forward rapidity

Signal extraction

Biswarup Paul

ICHEP 2022