Two-Particle Correlation in e⁺e⁻ Collisions at 91-209 GeV with Archived ALEPH Data

Janice Chen, Yi Chen, Michael Peters, <u>Yen-Jie Lee</u>, Massachusetts Institute of Technology

> Paoti Chang National Taiwan University

> > Marcello Maggi INFN Bari

N

International Conference on High Energy Physics, Bologna, Italy

9 July, 2022

In collaboration with Austin Baty (Rice), Anthony Badea (Harvard), Chris McGinn (CU Boulder), Jesse Thaler (MIT), Gian Michelle Innocenti (CERN), Tzu-An Sheng (MIT)

Motivation

- No significant ridge signal observed yet in e⁺e⁻ (at Z pole and Belle energies) and ep from ZEUS
 - Exciting to go to even higher collision energy data
 - Access to larger event multiplicity and different physics processes

Two-Particle Correlation in e⁺e⁻ Collisions at 91-209 GeV with Archived ALEPH Data

23 (2019) 21. 212002

PRL 128 (2022) 14, 142005

7FUS TPC

JHEP 04 (2020) 070

The ALEPH Detector

Two-Particle Correlation in e⁺e⁻ Collisions at 91-209 GeV with Archived ALEPH Data

High Multiplicity Event in e⁺e⁻ Collisions in LEP1

Highest multiplicity event in ALEPH LEP1 data Collision Energy = 91 GeV

Anthony Badea Austin Baty

Chris McGinn Michael Peters Jesse Thaler

Paoti Chang Tzu-An Sheng

+ YJL

55 Charged Particles Thrust T=0.71

Beam Axis Analysis

5

- Search for ridge signal with beam axis: enhance number of charged particle pairs with large $\Delta \eta$ gap and similar Φ (small $\Delta \Phi = \Phi_1 \Phi_2$)
- Ex: Sensitive to "pressure driven expansion" of the medium in the direction perpendicular to the beam axis

Yen-Jie Lee (MIT)

Thrust Axis Analysis

Thrust axis analysis to follow the "direction of color string"

Yen-Jie Lee (MIT)

Two-Particle Correlation in e⁺e⁻ Collisions at 91-209 GeV with Archived ALEPH Data

Thrust Axis Analysis

Pseudorapidity (η) and azimuthal angle (Φ) are calculated with respect to the Thrust Axis

Thrust Axis Analysis

Thrust axis analysis to follow the "direction of color string" Pseudorapidity (η) and azimuthal angle (Φ) are calculated with respect to the **Thrust Axis**

See also:

LEP1 Results at 91 GeV

Paoti Chang Tzu-An Sheng Chris McGinn Michael Peters Jesse Thaler Gian Michele Innocenti Anthony Badea Austin Baty

Two-Particle Correlation in e⁺e⁻ Collisions at 91-209 GeV with Archived ALEPH Data

Charged Particle Multiplicity Distributions in LEP2 Data

Two-Particle Correlation Function: 1D Projection

Janice Chen

Hadronic e⁺e⁻ Events at LEP 2 (no multiplicity cut)

Janice Chen

Hadronic e⁺e⁻ Events at LEP 2 (10<=N_{trk}<20)

Hadronic e⁺e⁻ Events at LEP 2 (20<=N_{trk}<30)

Janice Chen

Hadronic e⁺e⁻ Events at LEP 2 (30<=N_{trk}<40)

Janice Chen

Hadronic e⁺e⁻ Events at LEP 2 (40<=N_{trk}<50)

Janice Chen

Hadronic e⁺e⁻ Events at LEP 2 (N_{trk}>=50)

Janice Chen

Fourier Coefficients (v_n)

Janice Chen

Extracted v_n vs. Charged Particle p_T

Low multiplicity 10<=N_{track}<20

High multiplicity N_{track}>=50

Good agreement between data and MC

Larger v_2 and v_3 magnitudes than MC

Difference between Data and Archived MC

- Difference between data and MC v_2 is studied differentially in p_T bins*
- Data v_2 is systematically higher than MC simulation between $0 < p_T < 3 \text{ GeV}$
- Significance of this signal is under investigation

* p_T calculated with respect to thrust axis

Δv_2 in e⁺e⁻ vs. v_2^{sub} in pp

• Similar trend between e⁺e⁻ data and pp data

Summary

LEP2, √s = 183-209 GeV Archived ALEPH data • The first measurement of two-particle correlation function ≳ 0.5 Preliminary CMS pp 13 TeV, v^{sub}₂{2} and elliptic flow in high energy e⁺e⁻ collisions up to 209 GeV $N_{track} \ge 50$ CMS pp 7 TeV, v_sub{2} 0.4⊢ Thrust axis CMS pp 5 TeV, v^{sub}₂{2} 0.3 • No significant ridge like signal is observed in e⁺e⁻ collisions at 91 GeV 0.2 Preliminary LEP2 result with Thrust axis: Difference between data and archived MC is seen in events with more than 50 charged particles Data - Archived MC -0. MOD • A long-range near-side correlation signal shows up at p_(GeV) high multiplicity ALEPH e⁺e⁻, √s=183-209 GeV $N_{trk} \ge 50$ Thrust Axis • The extracted elliptic flow (v_2) is systematically higher than $\frac{1}{N_{trk}^{corr}} \frac{d^2 N^{pair}}{d\Delta \eta d\Delta \phi}$ Monte Carlo simulated e^+e^- collisions in the investigated p_T range ($p_T = 0$ to 3 GeV) Significance of this signal is under investigation

0.5

Acknowledgement

We would like to thank **Roberto Tenchini** and **Guenther Dissertori** from the ALEPH collaboration for the useful comments and suggestions on the use of ALEPH archived data.

We would like to thank **Jurgen Schukraft**, **Jiangyong Jia**, **Wei Li**, **Jing Wang**, **Camelia Mironov**, **Dennis Perepelitsa** and **Nestor Armesto** for the useful discussions on the analysis.

The MIT group's work was supported by US DOE-NP

Thank you!

Anthony Badea (Harvard, ATLAS)

Austin Baty (Rice, CMS)

(CU Boulder, ATLAS)

Janice Chen (MIT, BELLE/CMS)

Ben Nachman (LBNL, ATLAS)

Cheng-Wei Lin (NTU, BELLE)

Yi Chen (MIT, CMS)

Dennis Perepelitsa (CU Boulder, ATLAS)

Yang-Ting Chien (GSU)

Tzu-An Sheng (MIT, CMS)

Yen-Jie Lee

(MIT, CMS)

Patrick T. Komiske III (MIT, CTP)

Gian Innocenti

(CERN, ALICE)

Jesse Thaler

(MIT, CTP)

Eric Metodiev (MIT, CTP)

Jing Wang (MIT, CMS)

Paoti Chang

(NTU, BELLE/CMS)

Michael Peters

(MIT, CMS)

Marcello Maggi (INFN, CMS)

Günther Dissertori (ETH Zürich, CMS)

Yen-Jie Lee (MIT)

Backup Slides

Hadronic Event Selection

- Track Selection:
 - Particle Flow Candidate 0, 1, 2
 - Number of TPC hits for a charged tracks >= 4
 - |d0| < 2 cm
 - |z0|< 10 cm
 - |cosθ|<0.94
 - $p_T > 0.2 \text{ GeV}$ (transverse momentum with respect to beam axis)
 - N_{TPC} >=4
 - $x^2/ndf < 1000$.
- Neutral Hadron Selection:
 - Particle Flow Candidate 4, 5 (ECAL / HCAL object)
 - E> 0.4 GeV
 - |cosθ|<0.98
- Event Selection:
 - Number of good charged particles >= 5 (including charged hadrons and leptons)
 - Number of good ch+neu. Particles >= 13
 - E_{charged} > 15 GeV
 - $|\cos(\theta_{\text{sphericity}})| < 0.82$

Comparison to pp data

Difference between Data and MC

