Charm production: constraint to transport models and charm diffusion coefficient with ALICE

41st International Conference on High Energy Physics

Fabio Catalano on behalf of the ALICE Collaboration 7^{th} July 2022

Università and INFN Torino, Italy

fabio.catalano@cern.ch

Heavy flavours in ultrarelativistic heavy-ion collisions

Heavy flavours (c and b quarks) are produced in hard-scattering processes before the QGP formation

- $au_{\it prod} \leq \hbar/m_{c,b} \sim 0.1~(0.04)~{
 m fm}/c$
- $au_{QGP}\sim$ 0.3 fm/c (LHC)
- They experience the full QGP evolution
- Negligible in-medium production/annihilation

Excellent QGP probes!

Heavy flavours propagate through the QGP and interact with the medium constituents

- Energy loss via elastic scatterings and gluon radiation, depending on
 - colour charge
 - quark mass
 - path length in the medium

Participation in the fireball collective motion

- Brownian motion of heavy quarks in the QGP
- possible thermalisation in the medium

Modification of the hadronisation mechanism

- recombination with quarks from the medium

Nuclear modification factor (R_{AA})

$$R_{
m AA}~(p_{
m T}) = rac{1}{\langle N_{coll}^{
m AA}
angle} rac{{
m d}N_{
m AA}/p_{
m T}}{{
m d}N_{
m pp}/p_{
m T}}$$

Flow coefficients (v_n)

$$v_n = \langle \cos[n(arphi - \Psi_n)]
angle$$

A Large Ion Collider Experiment

Nuclear modification factor — Non-strange D mesons

07/07/2022

Azimuthal anisotropies — D mesons

▶ Positive D-meson v_2 and $v_3 \rightarrow$ charm-quark participation in QGP collective expansion

- ▶ Positive D_s^+ elliptic flow observed in $2 < p_T < 8 \text{ GeV}/c$ with a significance of 6.4σ
 - in agreement with non-strange D-meson v_2 given current uncertainties

07/07/2022

ALT-PUB-501952

- Simultaneous description of R_{AA} and v_2 challenging for charm-quark transport models
- Model-to-data comparison to:
 - understand relevant physics effects

- estimate the charm-quark spatial diffusion coefficient D_s

07/07/2022

E Catalano

- Radiative energy loss important to describe intermediate and high $p_{\rm T}$
 - small impact on low- $p_{\rm T}$ region

07/07/2022

7

- Charm-quark hadronisation via recombination crucial to describe low and intermediate p_T
 - D mesons acquire additional flow recombining with light quarks

Charm-quark spatial diffusion coefficient

- Spatial diffusion coefficient constrained from model-to-data comparison
 - using R_{AA} ($\chi^2/ndf < 5$ required), v_2 and v_3 ($\chi^2/ndf < 2$ required) of non-strange D mesons

 TAMU, MC@sHQ, LIDO, LGR, and Catania provide a reasonable description

► They have $1.5 < 2\pi D_s T_c < 4.5$ corresponding to a relaxation time $\tau_{charm} \simeq 3-8 \text{ fm}/c$

Leptons from heavy-flavour decays in Xe-Xe

• R_{AA} of μ^{\pm} and e^{\pm} from heavy-flavour decays reasonably well described by transport models

- some tension between PHSD (no radiative energy loss) and forward-muon measurement

Leptons from heavy-flavour decays in Xe–Xe — Comparison with Pb–Pb

- \triangleright R_{AA} of μ^{\pm} and e^{\pm} from heavy-flavour decays reasonably well described by transport models
 - some tension between PHSD (no radiative energy loss) and forward-muon measurement
- Similar R_{AA} of μ^{\pm} in Pb–Pb and Xe–Xe collisions at similar $\langle dN_{ch}/d\eta \rangle$
 - possibility to further constrain model calculations

D_s^+ and Λ_c^+ nuclear modification factors

- ▶ Hint of hadron-mass ordering $R_{AA}(\Lambda_c^+) > R_{AA}(D_s^+) > R_{AA}(D)$ for $p_T > 4 \text{ GeV}/c$
- ▶ Indication of flat $p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$ ratio with multiplicity
 - $R_{AA}(\Lambda_c^+) > R_{AA}(D)$ from interplay between recombination and radial flow? → different p_T redistribution between baryons and mesons?

D_s^+ -meson R_{AA} — Comparison with models

• Charm-quark transport models describe the D_s^+ R_{AA} and the hierarchy $R_{AA}(D_s^+) > R_{AA}(D)$

- include hadronisation via recombination and enhanced QGP strange-quark content

07/07/2022

$\Lambda_{\rm c}^+$ -baryon $R_{ m AA}$ — Comparison with models

Transport models fairly catch the measured Λ⁺_c-baryon nuclear modification factor
 Catania (assuming QGP also in pp) off at low p_T

▶ SHMc (statistical hadronisation + core-corona approach) underestimates the measurements

- ▶ Precise charm-hadron measurements down to low p_T by ALICE with Run 2 Pb–Pb data
 - beauty sector investigated via non-prompt D mesons and e^\pm from beauty-hadron decays

B. Zhang, 7th Jul 15:20 K. Demmich, 8th Jul 17:45

- What did we learn? Charm quarks:
 - interact with the medium via collisional and radiative processes
 - participate in the collective motion of the system
 - hadronise also via recombination in addition to fragmentation
- Just an appetizer for ALICE measurements of Run 3
 - continuous readout of Pb–Pb collisions at 50 kHz \rightarrow more than 50x larger data samples
 - upgraded ITS \rightarrow tracking precision improved by a factor 3–4 at $p_{\rm T}=200~{\rm MeV}/c$

```
R. Münzer, 8^{th} Jul 9:00
A. Landou, 8^{th} Jul 9:18
I. Cruceru, 8^{th} Jul 11:15
```

Backup

Charm-hadron yield extraction

07/07/2022

F. Catalano

D-meson elliptic flow in Pb-Pb collisions

D-meson v_2 measured with the scalar-product (SP) method

$$v_{2}\{SP\} = \frac{\langle \langle \boldsymbol{u}_{2} \cdot \boldsymbol{Q}_{2}^{\mathrm{A}*}/M^{\mathrm{A}} \rangle \rangle}{\sqrt{\frac{\langle \boldsymbol{Q}_{2}^{\mathrm{A}}/M^{\mathrm{A}} \cdot \boldsymbol{Q}_{2}^{\mathrm{B}*}/M^{\mathrm{B}} \rangle \langle \boldsymbol{Q}_{2}^{\mathrm{A}}/M^{\mathrm{A}} \cdot \boldsymbol{Q}_{2}^{\mathrm{C}*}/M^{\mathrm{C}} \rangle}}{\langle \boldsymbol{Q}_{2}^{\mathrm{B}}/M^{\mathrm{B}} \cdot \boldsymbol{Q}_{2}^{\mathrm{C}*}/M^{\mathrm{C}} \rangle}}$$

where
$$m{u}_2=e^{i2arphi_D}$$
 and $m{Q}_2=\sum_{j=1}^M w_j e^{i2arphi_j}$

- Subevents with different pseudorapidity corverage to suppress non-flow contributions
 - A → V0C ($-3.7 < \eta < -1.7$)
 - B \rightarrow V0A (2.8 $< \eta < 5.1$)
 - C TPC ($|\eta| < 0.8$)
- Signal v₂ extracted from a simultaneous fit to invariant-mass and v₂ vs mass distributions

$$v_2^{\text{tot}}(M) = \frac{N^{\text{sig}}(M)v_2^{\text{sig}} + N^{\text{bkg}}(M)v_2^{\text{bkg}}(M) + N^{\text{D}^+}(M)v_2^{\text{D}^+}}{N^{\text{sig}}(M) + N^{\text{bkg}}(M) + N^{\text{D}^+}(M)}$$

07/07/2022

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
ТАМИ	\checkmark	×		$\overline{\checkmark}$	\checkmark
LIDO	\checkmark	\checkmark		\checkmark	\checkmark
PHSD	\checkmark	×		\checkmark	\checkmark
DAB-MOD	\checkmark	\checkmark	\checkmark	\checkmark	×
Catania	\checkmark	×		\checkmark	\checkmark
MC@sHQ+EPOS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LBT	\checkmark	\checkmark		\checkmark	\checkmark
POWLANG+HTL	\checkmark	×		\checkmark	\checkmark
LGR	\checkmark	\checkmark	\checkmark	\checkmark	

Comparison with models — High- $p_{\rm T}$ region

07/07/2022

Results — D_s^+ -meson abundance

SHMc: JHEP 07 035 (2021) LGR: EPJC 80, 671 (2020) PHSD: PRC 92, 014910 (2015) TAMU: PRL 124, 042301 (2020) Catania: EPJC 78, 348 (2018)

 Indication of a higher D⁺_s/D⁰ ratio in Pb-Pb collisions than in pp at p_T < 8 GeV/c

 \blacktriangleright D_s^+ enhancement qualitatively described by transport models including charm-quark recombination in a strangeness-rich medium and by the SHM for charm quark

07/07/2022

Statistical hadronisation of charm quarks

- Statistical hadronisation model for charm quarks (SHMc)
 - charm quarks distributed into hadrons at phase boundary according to thermal weights

- Measured yield of mesons in agreement with SHMc predictions
- ► Measured Λ⁺_c-baryon yield underestimated
 - agreement assuming additional charm-baryon resonances

