

Recent Results on Femtoscopic Correlations with the CMS Experiment

CESAR A. BERNARDES (FOR THE CMS COLLABORATION)

IF-UFRGS, SPRACE

Introduction – femtoscopic correlations (I)

Access to

- □ Space-time dimensions of the particle emitting source
- Hadron-hadron final state interactions

Sensitive to contributions from

- Quantum statistical effects
 - Bose-Einstein or Fermi-Dirac
- □ Final state interactions (FSI)
 - Strong & Coulomb

Ann. Rev. of Nucl. and Part. Phys. **55** (2005) 357, Phys. of Atom. Nucl. **67** (2004) 72, Sov. J. Nucl. Phys. 35 (1982) 770

Introduction – femtoscopic correlations (II)

Two-particle correlations at low-q

$$\Box q^2 = q_{inv}^2 = -(p_1 - p_2)^2$$

Theoretically

□ Fourier transform of the particle source shape

• $C(q) \sim 1 \pm \lambda |F[\tilde{\rho}(q)]|^2 \rightarrow C(q) = N(1 \pm \lambda e^{-|qR|^{\alpha}})$

Experimentally

Single-ratio (SR):
$$C(q) = N \frac{T}{R}$$

Charged Particles

Length of homogeneity (R or R_{inv})

$^{1}\!/_{R^{2}}$ as function of m_{T}

From hydrodynamics prediction [NPA 946 (2016) 227]

- \Box Extrapolation to $m_T = 0$: source geometrical size (at kinetic freeze-out)
- \Box Slope: radial flow (larger slope \rightarrow larger flow)

Similar trends between PbPb and pp collisions

In PbPb: Lévy parameter (α)

Almost constant as function of $m_{\scriptscriptstyle T}$

Values raging from 1.6 to 2.0 (semi-peripheral to central collisions)

Particle emitting source shape: deviation from Gaussian

The correlation strength (λ)

Decreases with $m_T \text{ or } k_T$

Affected by the lack of particle identification

Decreasing the correlation strength

Strange Hadrons $K_{S}^{0}K_{S}^{0}, \Lambda K_{S}^{0} \oplus \overline{\Lambda} K_{S}^{0}, \Lambda \Lambda \oplus \overline{\Lambda}\overline{\Lambda}$

$\mathrm{K}^0_{\mathrm{s}}$ and $\Lambda + \overline{\Lambda}$ in PbPb collisions

Particles selected using Boosted Decision Trees method

 $\square \ K_s^0 \rightarrow \pi^+ + \pi^- \ , \ \Lambda \rightarrow p + \pi^-$

Signal: triple Gaussian Background: 4th order polynomial

$K_s^0 K_s^0$: R and λ as a function of centrality

Inclusion of FSI term in the fit introduce an overall change in R and λ

 \Box Except for λ in peripheral collisions

CMS PAS HIN-21-006

Scattering parameters

Summary

For the studied particle species correlations in pp and PbPb collisions

- Length of homogeneity (R or R_{inv})
 - Increases with N_{track} or more central collisions
 - Decreases with m_T or k_T

First time Lévy shape is analysed @LHC for PbPb

- Non-Gaussian behavior: centrality dependent
- □ R or R_{inv} shows m_T scaling (hydro) also for Lévy shape

Strange hadrons correlations

- □ First measurement of $\Lambda\Lambda \oplus \overline{\Lambda\Lambda}$ correlation in PbPb collisions at LHC: correlation above unity
- $\square \Lambda K^0_s \oplus \overline{\Lambda} K^0_s: anticorrelation$

Thank You!

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE SÃO PAULO RESEARCH FOUNDATION (FAPESP) GRANTS NO. 2018/01398-1 AND NO. 2013/01907-0. ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF FAPESP.

FAPERGS GRANT 22/2551-0000595-0 , CNPQ GRANT 407174/2021-4

BACKUP

The CMS detector

Correlation function in PbPb and pp collisions

Lévy fit in PbPb collisions @5TeV

$$\mathbf{k}_{\mathrm{T}} = \frac{1}{2} \left| \vec{\mathbf{p}}_{\mathrm{T},1} + \vec{\mathbf{p}}_{\mathrm{T},2} \right|$$

Exponential fit in pp collisions @13TeV

Correlation function in PbPb

 $K_s^0 K_s^0$: QS (Bose-Einstein) + strong FSI $\Lambda K_s^0 \bigoplus \overline{\Lambda} K_s^0$: strong FSI $\Lambda \Lambda \bigoplus \overline{\Lambda} \overline{\Lambda}$: QS (Fermi-Dirac) + strong FSI

